Психология математических способностей. Математические способности по Б.В

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Способности - индивидуально выраженные возможности к успешному осуществлению той или иной деятельности. Включают в себя как отдельные знания, умения навыки, так и готовность к обучению новым способам и приемам деятельности. Для классификации способностей используются разные критерии. Так, могут быть выделены сенсомоторные, перцептивные, мнемические, имажинативные, мыслительные, коммуникативные способности. В качестве другого критерия может выступать та или иная предметная область, в соответствии с чем способности могут быть квалифицированы как научные (математические, лингвистические, гуманитарные); творческие (музыкальные, литературные, художественные); инженерные.

Кратко сформулируем несколько положений общей теории способностей:

1. Способности – это всегда способности к определенному роду деятельности , они существуют только в соответствующей конкретной деятельности человека. Поэтому они и выявлены могут быть лишь на основе анализа конкретной деятельности. Соответственно этому и математические способности существуют только в математической деятельности и в ней должны выявляться.

2. Способности – понятие динамическое. Они не только проявляются и существуют в деятельности, они в деятельности создаются, в деятельности и развиваются. Соответственно этому и математические способности существуют только в динамике, в развитии, они формируются, развиваются в математической деятельности.

3. В отдельные периоды развития человека возникают наиболее благоприятные условия для становления и развития отдельных видов способностей и некоторые из этих условий имеют временный, преходящий характер. Такие возрастные периоды, когда условия для развития тех или иных способностей будут наиболее оптимальными, называются сензитивными (Л. С. Выготский, А. Н. Леонтьев). Очевидно, и для развития математических способностей существуют оптимальные периоды.

4. Успешность деятельности зависит от комплекса способностей. Равно и успешность математической деятельности зависит не от отдельно взятой способности, а от комплекса способностей.

5. Высокие достижения в одной и той же деятельности могут быть обусловлены различным сочетанием способностей. Поэтому принципиально можно говорить о различных типах способностей, в том числе и математических.

6. Возможна в широких пределах компенсация одних способностей другими, вследствие чего относительная слабость какой-нибудь одной способности компенсируется другой способностью, что в итоге не исключает возможности успешного выполнения соответствующей деятельности. А. Г. Ковалев и В. Н. Мясищев понимают компенсацию шире – говорят о возможности компенсации недостающей способности умением, характерологическими качествами (терпением, настойчивостью). По-видимому, компенсация того и другого вида может иметь место и в области математических способностей.

7. Сложным и не до конца решенным в психологии является вопрос о соотношении общей и специальной одаренности. Б. М. Теплов склонен был отрицать само понятие общей одаренности, безотносительной к конкретной деятельности. Понятия «способность» и «одаренность» по Б. М. Теплову имеют смысл только в соотношении с конкретными исторически развивающимися формами общественно-трудовой деятельности. Следует, по его мнению говорить о другом, о более общих и более специальных моментах в одаренности. С. Л. Рубинштейн справедливо отметил, что не следует противопоставлять друг другу общую и специальную одаренность – наличие специальных способностей накладывает определенный отпечаток на общую одаренность, а наличие общей одаренности сказывается на характере специальных способностей. Б. Г. Ананьев указал на то, что следует различать общее развитие и специальное развитие и соответственно общие и специальные способности. Каждое из этих понятий правомерно, обе соответствующие категории взаимосвязаны. Б. Г. Ананьев подчеркивает роль общего развития в становлении специальных способностей.

Исследование математических способностей в зарубежной психологии.

В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей . Если и здесь различать два разных аспекта этих способностей – «школьные» и творческие способности, то в отношении вторых существует полное единство – творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов – биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования . В этом плане можно выделить три важные проблемы.

1. Проблема специфичности математических способностей . Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность – это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

Исследование проблемы способностей в отечественной психологии.

Основным положением отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психические особенности не могут быть врожденными. Это целиком относится и к способностям. Способности всегда результат развития. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания.

Итак, решающую и определяющую роль играют общественный опыт, социальное воздействие, воспитание. Ну а какова же роль прирожденных способностей?

Конечно, трудно определить в каждом конкретном случае относительную роль врожденного и приобретенного, так как и то и другое слито, неразличимо. Но принципиальное решение этого вопроса в отечественной психологии таково: врожденными способности быть не могут, врожденными могут быть только задатки способностей – некоторые анатомо-физиологические особенности мозга и нервной системы, с которыми человек появляется на свет.

Но какова роль в развитии способностей этих врожденных биологических факторов?

Как отмечал С. Л. Рубинштейн, способности не предопределены, но и не могут быть просто насаждены извне. В индивидах должны существовать предпосылки, внутренние условия для развития способностей. А. Н. Леонтьев, А. Р. Лурия также говорят о необходимых внутренних условиях, делающих возможным возникновение способностей.

Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются. Задаток не потенциальная способность (а способность не задаток в развитии), так как анатомо-физиологическая особенность ни при каких условиях не может развиваться в психическую особенность.

Несколько иное понимание задатков дается в работах А. Г. Ковалева и В. Н. Мясищева. Под задатками они понимают психофизиологические свойства, в первую очередь те, которые обнаруживаются в самой ранней фазе овладении той или иной деятельностью (например, хорошее цветоразличение, зрительная память). Другими словами, задатки – это первичная природная способность, еще не развитая, но дающая себя знать при первых пробах деятельности.

Однако и при таком понимании задатков сохраняется основное положение: способности в собственном смысле слова формируются в деятельности, являются прижизненным образованием.

Естественно, все вышесказанное можно отнести и к вопросу о математических способностях, как виду общих способностей.

Математические способности и их природные предпосылки (работы Б. М. Теплова).

Хотя математические способности и не были предметом специального рассмотрения в трудах Б. М. Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы - "Психология музыкальных способностей" и "Ум полководца", ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

В обеих работах Б. М. Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б. М. Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

Наиболее ярко роль общих способностей продемонстрирована в работе "Ум полководца". Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б. М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б. М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

Важное место в интеллектуальной деятельности полководца занимает память. Она очень избирательна, то есть удерживает прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б. М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

Б. М. Теплов приходит к выводу, что "умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца" (Б. М. Теплов 1985, стр.249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием "воля". Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

Особое место в интеллектуальной деятельности полководца Б. М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б. М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

Подтверждения положениям, проанализированным и обобщенным Б. М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде "Математическое творчество" Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом "озарения" необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия (Пуанкаре А., 1909).

Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, "между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера" (Адамар Ж., стр.98). Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В. А. Крутецкий дает следующее определение математическим способностям: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики" (Крутецкий В.А.,1968).

Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б. М. Теплов и С. Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В. С. Мерлин, 1986). Б. Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами "талант" и "призвание" (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э. А. Голубева 1993).

Общая схема структуры математических способностей в школьном возрасте по В. А. Крутецкому.

Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.

1. Получение математической информации.

1) Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.

2. Переработка математической информации.

1) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

2) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

3) Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

4) Гибкость мыслительных процессов в математической деятельности.

5) Стремление к ясности, простоте, экономности и рациональности решений.

6) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

1) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

4. Общий синтетический компонент.

1) Математическая направленность ума.

Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

1. Быстрота мыслительных процессов как временная характеристика.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

3. Память на цифры, числа, формулы.

4. Способность к пространственным представлениям.

5. Способность наглядно представить абстрактные математические отношения и зависимости.

Заключение.

Проблема математических способностей в психологии представляет обширное поле действия для исследователя. В силу противоречий между различными течениями в психологии, а также внутри самих течений, пока не может быть и речи о точном и строгом понимании содержания этого понятия.

Рассмотренные в данной работе книги подтверждают это заключение. Вместе с тем следует отметить неугасающий интерес к этой проблеме во всех течениях психологии, что подтверждает следующий вывод.

Практическая ценность исследований по этой теме очевидна: математическое образование играет ведущую роль в большинстве образовательных систем, а оно, в свою очередь, станет более эффективным после научного обоснования его основы – теории математических способностей.

Итак, как утверждал В. А. Крутецкий: «Задача всестороннего и гармонического развития личности человека делает совершенно необходимой глубокую научную разработку проблемы способности людей к тем или иным видам деятельности. Разработка этой проблемы представляет как теоретический, так и практический интерес».

Список литературы:

Адамар Ж. Исследование психологии процесса изобретения в области математики. М., 1970.
Ананьев Б.Г. Избранные труды: В 2-х томах. М., 1980.
Голубева Э.А., Гусева Е.П., Пасынкова А.В., Максимова Н.Е., Максименко В.И. Биоэлектрические корреляты памяти и успеваемости у старших школьников. Вопросы психологии, 1974, № 5.
Голубева Э.А. Способности и индивидуальность. М., 1993.
Кадыров Б.Р. Уровень активации и некоторые динамические характеристики психической активности.
Дис. канд. психол. наук. М., 1990.
Крутецкий В.А. Психология математических способностей школьников. М., 1968.
Мерлин В.С. Очерк интегрального исследования индивидуальности. М., 1986.
Печенков В.В. Проблема соотношения общих и специально человеческих типов в.н.д. и их психологических проявлений. В книге "Способности и склонности", М., 1989.
Пуанкаре А. Математическое творчество. М., 1909.
Рубинштейн С.Л. Основы общей психологии: В 2-х т. М., 1989.
Теплов Б.М. Избранные труды: В 2-х томах. М., 1985.


Способности к математике – это один из данных природой талантов, проявляющийся уже с раннего возраста и связанный напрямую со становлением творческого потенциала, стремлением к познанию мира вокруг малыша. Но почему изучение математики так сложно дается некоторым детям и можно ли улучшить эти способности?

Мнение, что математика подвластна лишь одарённым детям, ошибочно. Математические способности, как и прочие таланты, являются результатом гармоничного развития ребенка, и начинать надо с самого раннего возраста.

В современном компьютерном мире с его цифровыми технологиями умение “дружить” с числами крайне необходимо. Много профессий основано на математике, развивающей мышление и относящейся к одному из самых важных факторов влияния на интеллектуальный рост детей. Эта точная наука, чья роль в воспитании и обучении ребенка неоспорима, развивает логику, учит последовательно мыслить, определять сходства, связи и отличия предметов и явлений, делает детский ум быстрым, внимательным и гибким.

Чтобы занятия математикой у детей пяти-семи лет были эффективными, необходим серьезный подход, и первым делом следует диагностировать их знания и умения – оценить, на каком уровне находятся у малыша логическое мышление и базовые математические понятия.

Диагностика математических способностей детей 5-7 лет по методу Белошистой А.В.

Если ребенок с математическим складом ума освоил устный счет еще в раннем возрасте, это еще не является основанием для стопроцентной уверенности в его будущем как гения математики. Навыки устного счёта – это лишь небольшой элемент точной науки и далеко не самый сложный. О наличии у ребенка способностей к математике свидетельствует особый способ мышления, которому присущи логика и абстрактное мышление, понимание схем, таблиц и формул, умение анализировать, способность видеть фигуры в пространстве (объемными).

Чтобы определить наличие у детей от младшего дошкольного (4-5 лет) до младшего школьного возраста данных способностей, существует система эффективной диагностики, созданная доктором педагогических наук Анной Витальевной Белошистой. Она основана на создании учителем или родителем определенных ситуаций, в которых ребенок должен применить то или иное умение.

Этапы диагностики:

  1. Проверка ребенка 5-6 лет на предмет владения навыками анализа и синтеза. На данном этапе можно оценить, как ребенок умеет сравнивать предметы различных форм, разделять их и обобщать по определенным признакам.
  2. Тестирование навыков образного анализа у детей в возрасте 5-6 лет.
  3. Проверка умения анализировать и синтезировать информацию, по результатам которого выявляется способность дошкольника (первоклассника) определять формы различных фигур и замечать их в сложных картинках с наложенными друг на друга фигурами.
  4. Тестирование с целью определения у ребенка понимания базовых тезисов математики – речь идет о понятиях “больше” и “меньше”, порядковом счете, форме простейших геометрических фигур.

Первые два этапа такой диагностики проводятся в начале учебного года, остальные – в конце, что дает возможность оценить динамику математического развития ребенка.

Применяемый для проверки материал должен быть понятным и интересным для детей – соответствующим возрасту, ярким и с картинками.

Диагностика математических способностей ребенка по методу Колесниковой Е.В.

Елена Владимировна создала немало учебно-методических пособий для развития математических способностей у дошкольников. Её метод тестирования детей 6 и 7 лет получил широкое распространение у учителей и родителей разных стран и соответствует требованиям ФГОС (Россия).

Благодаря методу Колесниковой можно максимально точно установить уровень основных показателей развития математических навыков детей, узнать их готовность к школе, определить слабые стороны для своевременного восполнения пробелов. Данная диагностика помогает найти пути улучшения математических способностей малыша.

Развитие математических способностей ребенка: советы родителям

С любой наукой, даже такой серьезной, как математика, малыша лучше знакомить в игровой форме – именно это будет лучшим методом обучения, который следует выбрать родителям. Прислушайтесь к словам известного ученого Альберта Эйнштейна: “Игра – это высшая форма исследования”. Ведь при помощи игры можно получить потрясающие результаты:

– познание себя и окружающего мира;

– формирование базы математических знаний;

– развитие мышления:

– становление личности;

– развитие коммуникабельности.

Применять можно различные игры:

  1. Счетные палочки. Благодаря им малыш запоминает формы предметов, развивает свое внимание, память, смекалку, формируются навыки сравнения и усидчивость.
  2. Головоломки, развивающие логику и смекалку, внимание и память. Логические задачи помогают детям научиться лучшему восприятию пространства, взвешенному планированию, простому и обратному, а также порядковому счету.
  3. Математические загадки – это отличный способ развития основных аспектов мышления: логики, анализа и синтеза, сравнения и обобщения. Во время поиска решения дети учатся самостоятельно делать выводы, справляться с трудностями и отстаивать свою точку зрения.

Развитие математических способностей через игру формирует учебный азарт, добавляет яркие эмоции, помогает малышу полюбить заинтересовавший его предмет изучения. Также стоит отметить, что игровая деятельность способствует и развитию творческих способностей.

Роль сказок в развитии математических способностей дошкольников

Детской памяти присущи свои особенности: она фиксирует яркие эмоциональные моменты, то есть ребенок запоминает ту информацию, которая связана с удивлением, радостью, восхищением. И учиться “из-под палки” – крайне неэффективный способ. В поиске результативных методов обучения взрослым следует вспомнить о таком простом и обыденном элементе, как сказка. Именно сказка является одним из первых средств знакомства малыша с окружающим миром.

Для детей сказка и реальность тесно связаны, волшебные персонажи – настоящие и живые. Благодаря сказкам развивается речь ребенка, его фантазия и смекалка; они дают понятие добра, честности, расширяют кругозор, а также дают возможность развивать и математические навыки.

К примеру, в сказке “Три медведя” малыш в ненавязчивой форме знакомится со счётом до трех, понятиями “маленький”, “средний” и “большой”. “Репка”, “Теремок”, “Козленок, который умел считать до 10”, “Волк и семеро козлят”, – в этих сказках можно научиться простому и порядковому счёту.

Обсуждая сказочных персонажей, можно предложить крохе сравнить их по ширине и высоте, “спрятать” в геометрических фигурах, подходящих по размеру или форме, что способствует развитию абстрактного мышления.

Использовать сказки можно не только дома, но и на занятиях в школе. Дети очень любят уроки, построенные на сюжетах их любимых сказок, с применением загадок, лабиринтов, пальцематики. Такие занятия станут настоящим приключением, в которых малыши будут принимать личное участие, а значит, и материал будет усвоен лучше. Главное – вовлечь детей в процесс игры и вызвать у них интерес.

«Очень большой и сложный вопрос: имеются ли у данного ученика математические способности или нет?

Прежде всего, что понимать под наличием способностей: творческие способности или же способность успешно преодолеть школьную программу по математике, программу втуза?

Слишком большой разброс начальных данных в исходном материале: одни не научились учиться и считают, что если они запомнили без понимания правила, методы решения, то это всё, что от них требуется; других же с раннего детства приучили прежде понимать, а потом запоминать, и к самостоятельному поиску решений; третьих - пользоваться правилами решения, придуманных для разных типов задач, но не самостоятельно мыслить.

Третий тип хорошо известен преподавателям, они знают этих натасканных на правилах мальчиков и девочек, у которых моментально слетают с языка заученные формулировки, но нет привычки искать самостоятельное решение.

Мне приходилось встречаться со школьниками всех трёх указанных типов первоначальной математической подготовки. Конечно, те, кто привык понимать и самостоятельно мыслить, резко выделялись на фоне остальной серенькой массы. Но затем, когда после двух-трёх лет переподготовки и остальные подходили к необходимости понимания материала и отказывались от привычки зазубривания без понимания, появлялись и в их среде яркие личности, способные вносить нечто новое , предлагать неожиданные решения, проявлять свои истинные способности.

Моё убеждение, что способности к хорошему познанию математики, по крайней мере школьной и вузовской, имеют все нормальные дети. Их только нужно научить учиться. Научить пользоваться тем даром, которым наделила человека природа - способностью мыслить. Некоторые школьники буквально менялись коренным образом, когда в их первоначальном математическом образовании удавалось ликвидировать пропуски в знаниях и умениях. Поэтому я резко осуждаю тех, кто слишком рано приклеивает к тому или иному учащемуся ярлык неспособного к математике. Я позволю себе в качестве примера привести самого себя: включительно до шестого класса мне тяжело давалась математика, я испытывал постоянный страх перед задачами.

Я помню, как говорил родителям: «как бы было хорошо учиться, если бы не было математики». В 1925 г. семья переехала в Саратов. Обнаружилось, что в саратовской школе прошли по математике больше, и мне пришлось догонять класс. Я самостоятельно изучил нужные разделы и обратился к прежнему материалу, в котором у меня также оказались пробелы.

Затем мне на глаза попался сборник конкурсных задач, предлагавшихся при поступлении в Петербургский институт путей сообщения. Я перерешал значительное число задач самостоятельно. Через полгода я прослыл лучшим учеником класса по математике. Всё дело в том, что при самостоятельной работе над учебником я доводил дело до понимания и только затем шёл дальше, предварительно закрепляя пройденный материал самостоятельным решением задач. Затем в университете я также занял положение математического лидера, хотя речь шла только об учебном процессе, а не о собственном творчестве. Потребовалось много лет, чтобы я выдвинул проблемы для исследования и начал влиять на творческие интересы других.

Будучи студентом университета, я придерживался такого правила: внимательно слушал лекции, в тот же день просматривал сделанные краткие записи и расширял полученные сведения, прочитывая соответствующие места учебника. Изученное немедленно закреплял несколькими самостоятельно решенными задачами. Такой способ повторения помогал мне избегать горячки перед экзаменами. Мне достаточно было освежить в памяти ранее изученное.

Я никогда не позволял себе идти дальше, не поняв предыдущего. Пожалуй, имеет смысл сказать, что сразу же после лекций, после обдумывания, я вкратце записывал содержание лекции, уделяя внимание четкости формулировок определений и теорем. Дополнительные сведения, почерпнутые из книг, я также помещал после записи содержания лекции. Мои записки пользовались успехом на курсе, их брали, переписывали, просили на время каникул для пересдачи. В результате мне не удалось сохранить ни одной такой тетради, все они разошлись по рукам.

Я считаю, что составление записок мне принесло двойную пользу. Во-первых, я с самого начала изучал как следует всё новое, что нам излагалось и, во-вторых, я приучался кратко излагать то основное, что следовало знать и уметь применять. Эта привычка к кратким и чётким формулировкам сохранилась у меня на всю дальнейшую жизнь.

Если говорить о способностях воспринимать курс школьной и вузовской математики, то я убеждён в том, что в большинстве случаев отсутствие способностей приписывают тем, кто не хочет учиться или же имеет серьёзные пробелы в предшествующих частях курса и не считает нужным восстановить своевременно непознанное. Многолетний опыт общения со студентами, школьниками и их родителями убедил меня в том, что, как правило, неудачи усвоением курса математики связаны не с отсутствием математических способностей, а с отсутствием прочных знаний фундаментальных понятий, с ленью ума, которая мешает систематической работе над материалом, и со стремлением се познание свести к запоминанию без понимания. Мы же должны помнить, что только в самостоятельном преодолении трудностей - ключ к познанию и уверенности в своих гениях и знаниях.

В подавляющем большинстве случаев, когда говорят об отсутствии у учащегося математических способностей для познания обязательного курса, речь должна идти о другом - либо о неумении, либо о нежелании учиться.

Заключение же об отсутствии способностей обычно педагогически необосновано и вредно. Такое заключение способно угнетающе подействовать на психику учащегося. Это во-первых. А во-вторых, оно как бы выдает индульгенцию лентяю или же не научившемуся учиться.

Умение учиться не приходит само собой, а нуждается в систематическом воспитании, постоянном внимании учителей и серьёзных усилиях учащихся. Цель школьного обучения состоит не в том, чтобы перегрузить память учащихся сведениями, которые не превращаются в орудие труда, а в том, чтобы сделать ум пытливым, подвижным, способным анализировать новые ситуации, находить подходы к решению возникающих проблем. Тот, кто делает ставку только на память, на зубрёжку, отключает мысль, разум от работы по познанию. Память обязана играть роль активного помощника разума, и не следует навязывать ей несвойственную роль единственного средства познания. В памяти должны храниться основные сведения и идеи, которые по мере надобности превращаются в активные методы.

Точно так же невозможно научить говорить на чужом языке, если только снабдить память словами и правилами. Этого мало. Необходимо ещё приучить человека активно пользоваться полученным запасом знаний. А для этого нужно говорить, т. е. заставлять знания не лежать мертвым грузом в недрах памяти, а активно действовать. Для математики упражнения на решение задач, на проведение логических заключений так же обязательны, как разговор на чужом языке при его изучении».

Гнеденко Б.В., Математика и жизнь, М., «Комкнига», 2006 г., с.118-121.

Калькуляторы могут быть удивительно полезными, но они не всегда под рукой. К тому же не всем удобно доставать калькуляторы или телефоны, чтобы подсчитать, сколько нужно заплатить в ресторане, или вычислить размер чаевых. Вот десять подсказок, которые могут помочь вам произвести все эти подсчеты в уме. На самом деле это совсем не сложно, особенно если запомнить несколько простых правил.

Прибавляйте и вычитайте слева направо

Помните, как в школе нас учили прибавлять и вычитать в столбик справа налево? Это сложение и вычитание удобно, когда под рукой карандаш и листок бумаги, но в уме эти математические действия легче выполнить, считая слева направо. В числе слева расположена цифра, определяющая большие ценности, например сотни и десятки, а справа меньшие, то есть единицы. Слева направо считать интуитивнее. Таким образом, прибавляя 58 и 26, начните с первых цифр, сначала 50 + 20 = 70, потом 8 + 6 = 14, затем сложите оба результата - и получите 84. Легко и просто.

Облегчите себе задачу

Если вы столкнулись со сложным примером или задачей, попытайтесь найти способ упростить ее, например, добавить или отнять определенное число, чтобы сделать общее вычисление проще. Если, например, вам нужно посчитать, сколько будет 593 + 680, сначала прибавьте 7 к 593, чтобы получить более удобное число 600. Вычислите, сколько будет 600 + 680, а затем от полученного результата 1280 отнимите те же 7, чтобы получить правильный ответ - 1273.

Подобным образом можно поступать и с умножением. Чтобы умножить 89 x 6, вычислите, сколько будет 90 x 6, а затем отнимите оставшиеся 1 х 6. Таким образом, 540 - 6 = 534.

Запомните стандартные блоки

Запоминание таблиц умножения является важной и нужной частью математики, которая отлично помогает решать примеры в уме.

Запоминая основные «стандартные блоки» математики, такие как таблица умножения, квадратные корни, процентные соотношения десятичных и обыкновенных дробей, мы можем немедленно получить ответы на простые задачи, спрятанные в более трудных.

Помните полезные уловки

Чтобы быстрее справиться с умножением, важно помнить несколько простых уловок. Одно из самых очевидных правил - умножение на 10, то есть просто добавление ноля к умножаемому числу или перенос запятой на один десятичный показатель. При умножении на 5, ответ будет всегда заканчиваться цифрой 0 или 5.

Кроме того, умножая число на 12, сначала умножьте его на 10, а потом на 2, затем прибавьте результаты. Например, вычисляя 12 x 4, сначала умножьте 4 x 10 = 40, а затем 4 x 2 = 8, и прибавьте 40 + 8 = 48. Умножая на 15, просто умножьте число на 10, и затем прибавьте еще половину полученного, например, 4 x 15 = 4 x 10 = 40, плюс еще половина (20), получается 60.

Есть также хитрая уловка для умножения на 16. Во-первых, умножьте рассматриваемое число на 10, а затем умножьте половину числа на 10. После прибавьте оба результата к числу, чтобы получить окончательный ответ. Таким образом, чтобы вычислить 16 x 24, сначала вычислите 10 x 24 = 240, затем половину 24, то есть 12, умножьте на 10 и получите 120. И последний шаг: 240 + 120 + 24 = 384.

Квадраты и их корни очень полезны

Почти как таблица умножения. И помочь они могут с умножением более крупных чисел. Квадрат получается при умножении числа на само себя. Вот как работает умножение с использованием квадратов.

Давайте предположим на мгновение, что мы не знаем ответ на 10 x 4. Сначала выясняем среднее число между этими двумя числами, оно равно 7 (т. е. 10 - 3 = 7, и 4 + 3=7, при этом различие между средним числом равно 3 - это важно).

Затем определяем квадрат 7, который равен 49. У нас теперь есть число, близкое к финальному ответу, но оно не достаточно близко. Чтобы получить правильный ответ, возвращаемся к различию между средним числом (в этом случае 3), его квадрат дает нам 9. Последний шаг включает в себя простое вычитание, 49 - 9 = 40, теперь у вас есть правильный ответ.

Это похоже на окольный и чересчур сложный способ вычислить, сколько же будет 10 x 4, но та же самая техника прекрасно работает и для больших чисел. Возьмем, например, 15 x 11. Сначала мы должны найти среднее число между этими двумя (15 - 2 = 13, 11 + 2 = 13). Квадрат 13 равен 169. Квадрат различия среднего числа 2 равен 4. Получаем 169 - 4 = 165, вот и правильный ответ.

Иногда достаточно и приблизительного ответа

Если вы пытаетесь решить сложные задачи в уме, неудивительно, что на это уходит немало времени и усилий. Если вам не нужен абсолютно точный ответ, возможно, достаточно будет подсчитать приблизительное число.

То же самое касается и задач, в условиях которых вам не известны все точные данные. Например, во время Манхэттенского проекта физик Энрико Ферми хотел примерно подсчитать силу атомного взрыва, прежде чем ученые получат точные данные. С этой целью он набросал бумажных обрывков на пол и следил за ними с безопасного расстояния, в тот момент, когда до бумажек дошла взрывная волна. Измерив расстояние, на которое сдвинулись обрывки, он предположил, что сила взрыва составила приблизительно 10 килотонн в тротиловом эквиваленте. Эта оценка оказалась довольно точна для предположения навскидку.

К счастью, нам не приходится регулярно оценивать приблизительную силу атомных взрывов, однако приблизительные подсчеты не повредят, если, например, вам нужно предположить, сколько в городе настройщиков фортепиано. Для этого проще всего оперировать числами, которые просто делить и умножать. Таким образом, сначала вы оцениваете население своего города (например, сто тысяч человек), затем оцениваете предположительное число фортепьяно (скажем, десять тысяч), ну и затем количество настройщиков фортепьяно (например, 100). Вы не получите точный ответ, но сумеете быстро предположить приблизительное количество.

Перестраивайте примеры

Основные правила математики помогают перестроить сложные примеры в более простые. Например, вычисление в уме примера 5 x (14 + 43) кажется грандиозной и даже непосильной задачей, но пример можно «разломить» на три довольно несложных вычисления. Например, эта непосильная задача может быть перестроена следующим образом: (5 x 14) + (5 x 40) + (5 x 3) = 285. Не так уж и сложно, правда?

Упрощайте задачи

Если задача кажется сложной, упростите ее. Всегда проще справиться с несколькими простыми заданиями, чем с одним сложным. Решение многих сложных примеров в уме заключается в умении правильно разделить их на более простые примеры, решение которых не составляет труда.

Например, умножать на 8 проще всего, удваивая число три раза. Таким образом, вместо того, чтобы пытаться решить, сколько будет 12 x 8 традиционным способом, просто удвойте 12 три раза: 12 х 2 = 24, 24 х 2 = 48, 48 х 2 = 96.

Или умножая на 5, сначала умножайте на 10, так как это легко, затем разделите результат на 2, так как это также довольно легко. Например, для решения 5 x 18, вычислите 10 x 18 и разделите на 2, где 180: 2 = 90.

Пользуйтесь возведением в степень

Вычисляя большие суммы в уме, помните, что вы можете преобразовать их в более мелкие числа, умноженные на 10 в нужной степени. Например, сколько получится, если 44 миллиарда разделить на 400 тысяч? Простой способ решить эту задачу состоит в том, чтобы преобразовать 44 миллиарда в следующее число - 44 х 10 9 , а из 400 тысяч сделать 4 х 10 5 . Теперь мы можем преобразовать задачу следующим образом: 44: 4 и 10 9: 10 5 . Согласно математическим правилам, все это выглядит так: 44: 4 х 10(9-5), таким образом, мы получаем 11 x 10 4 = 110,000.

Самый простой способ вычислить необходимые чаевые

Математика необходима даже во время ужина в ресторане, точнее после него. В зависимости от заведения, размер чаевых может составлять от 10% до 20% от стоимости счета. Например, в США принято оставлять на чай официантам 15%. И там, как и во многих европейских странах, чаевые обязательны.

Если вычислить 10% от общей суммы сравнительно легко (просто разделите сумму на 10), то с 15 и с 20% дело, кажется, обстоит сложнее. Но на самом деле, все так же просто и очень логично.

Вычисляя 10-процентные чаевые за ужин, который обошелся в 112,23 доллара, просто переместите десятичную точку влево на одну цифру, получится 11,22 $. Вычисляя 20-процентные чаевые, сделайте то же самое, и просто удвойте полученную сумму (20% просто в два раза больше 10%), в этом случае чаевые составят 22,44 $.

Для 15-процентных чаевых сначала определите 10% от суммы, а затем добавьте половину полученной суммы (дополнительные 5% - это половина 10-процентной суммы). Не волнуйтесь, если не можете получить точный ответ, до последнего цента. Если не заморачиваться слишком сильно с десятичными знаками, мы можем быстро вычислить, что 15-процентные чаевые от суммы 112,23 $ составляют 11 + 5,50 $, что дает нам 16,50 $. Достаточно точно. Если вы не хотите обидеть официанта, недосчитав нескольких центов, округлите сумму до целого числа и заплатите 17 долларов.

  • Свойства продуктивности психических процессов
  • 3.7. Структура познавательных способностей
  • 3.8. Психология специальных способностей
  • Ощущение
  • 4. Психология общих способностей
  • 4.1. Об учёном-поэте
  • 4.2. Творческая личность и её жизненный путь
  • 4.3. Подход в.Н. Дружинина и н.В. Хазратовой
  • 4.4. Психогенетика креативности и обучаемость
  • 4.5. Обучаемость, креативность и интеллект
  • 5. Метасистемный подход в разработке проблемы способностей (а.В. Карпов)
  • 5.1. Задачи и гипотезы исследования
  • 5.2. О понятии интегральных способностей личности
  • 5.3. Рефлексивность в структуре общих способностей
  • Коэффициенты ранговой корреляции между уровнем развития общих способностей
  • Результаты «косоугольной» факторизации
  • Значения структурных «весов» переменных, входящих в первый фактор1
  • Результаты факторизации по методу «главных компонент»
  • Коэффициенты линейной корреляции между уровнем рефлексивности и баллами по субтестам «Теста умственных способностей»
  • Показатели значимости различий между высоко- и низкорефлексивными испытуемыми при выполнении субтестов «Теста умственных способностей»
  • 5.4. Уровневый статус метакогнитивных способностей
  • 6. Психология многосторонних и специальных способностей
  • 6.3. О психологии музыкальных способностей
  • Анализ некоторых компонентов музыкальных способностей Ощущения
  • Средние частоты формант гласных (в Гц)
  • 6.5. Генезис музыкального восприятия
  • Восприятие музыкального ритма
  • 6.7. Музыкальная память
  • 6.8. Основные причины неуспеха в музыкальной деятельности (е.Ф. Ященко)
  • 6.9. Психология литературных способностей
  • Личность
  • 6.11. Краткий обзор исследований математических способностей
  • 6.12. Педагогические способности
  • 6.13. Метаиндивидуальные характеристики учителя
  • Устойчивость к психическому стрессу
  • 6.14. Художественно-творческие способности
  • Основные профессиональные требования к индивидуальным особенностям артиста балета
  • 7. Исследование самоактуализации как способности у студентов разной профессиональной подготовки
  • 7.1. Возможности творческого саморазвития личности студентов (на материале изучения типа личности, акцентуаций характера и их сопряженности)
  • Ценностные ориентации типов темперамента
  • 7.2. Модели перцептивной и социальной направленности личности студентов разной профессиональной подготовки
  • 7.3. Профессионально-личностные качества и ценностные ориентации студентов факультета сервиса и лёгкой промышленности
  • Методика исследования
  • Результаты исследования и их обсуждение
  • Ранги профессиональных карьер по Дж. Холланду
  • 7. 4. Особенности самоактуализации студентов экономического и технических факультетов
  • Материал и методики
  • Результаты и их обсуждение
  • 7.5. Различия между симптомокомплексами личностных черт у студентов экономического и технических факультетов с высоким и низким уровнями развития самоактуализации
  • Факторное отображение структуры личности студентов экономического и технических факультетов, имеющих высокий и низкий уровни развития самоактуализации, после варимакс-вращения
  • 7.6. Половые и профессиональные различия в самоактуализации
  • Методика
  • Результаты
  • Средние значения показателей тестов р. Кеттелла и сат у студентов экономического и технических факультетов (дисперсионный анализ)
  • Данные, используемые для дисперсионного анализа выборки студентов экономического и технических факультетов разного пола и уровня самоактуализации
  • Данные дисперсионного анализа и уровней значимости различий индивидуально-психологических свойств студентов экономического и технических факультетов разного пола и уровня самоактуализации
  • Обсуждение результатов
  • 7.7. Ценностно-смысловая концепция самоактуализации
  • Симптомокомплексы различий личностных черт и смысложизненных ориентаций студентов разных факультетов
  • Симптомокомплексы различий личностных черт и смысложизненных ориентаций студентов разных факультетов с высоким и низким уровнями самоактуализации (са)
  • 3 Этап. Сравнительный анализ взаимосвязей личностных черт и смысложизненных ориентаций у студентов с высоким и низким уровнями са.
  • Заключение и выводы
  • Заключение
  • Общий список литературы
  • 6.11. Краткий обзор исследований математических способностей

    В исследованиях под руководством В.А. Крутецкого отражены разные уровни изучения проблемы математических, литературных и конструктивно-технических способностей. Однако все исследования были организованы и проводились по общей схеме:

    1-й этап – исследование сущности, структуры конкретных способностей;

    2-й этап – исследование возрастных и индивидуальных различий в структуре конкретных способностей, возрастной динамики развития структуры;

    3-й этап – изучение психологических основ формирования и развития способностей.

    Работы В. А. Крутецкого, И. В. Дубровиной, С. И. Шапиро дают общую картину возрастного развития математических способностей школьников на всём протяжении школьного обучения.

    Специальное исследование математических способностей школьников провёл В.А. Крутецкий (1968) . Под способностью к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности, относительно быстрое, лёгкое и глубокое овладение знаниями, умениями и навыками в области математики. В структуре математических способностей им выделены следующие основные компоненты:

    1) способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи;

    2) способность к быстрому и широкому обобщению математических объектов, отношений и действий;

    3) способность к свёртыванию процесса математического рассуждения и системы соответствующих действий – способность мыслить свёрнутыми структурами;

    4) гибкость мыслительных процессов в математической деятельности;

    5) способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли;

    6) стремление к ясности, простоте, экономности и рациональности решений;

    7) математическая память (обобщённая память на математические отношения, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним). Методика исследования способностей к математике принадлежит В.А. Крутецкому (1968).

    Дубровиной И.В. разработана модификация этой методики применительно к учащимся 2 – 4 классов .

    Анализ материалов, изложенных в этой работе, позволяет сделать следующие выводы.

    1. У способных к математике учащихся младшего школьного возраста довольно чётко обнаруживаются такие компоненты математических способностей, как способность к аналитико-синтетическому восприятию условий задач, способность к обобщению математического материала, гибкость мыслительных процессов. Менее ясно выражены в этом возрасте такие компоненты математических способностей, как способность к свёртыванию рассуждений и системы соответствующих действий, стремление к поиску наиболее рационального, экономного (изящного) способа решения задач.

    Указанные компоненты наиболее отчётливо представлены лишь у учащихся группы «Очень способные» (ОС). Это же относится и к особенностям математической памяти младших школьников. Только у учащихся группы ОС можно обнаружить признаки обобщённой математической памяти.

    2. Проявляются все указанные выше компоненты математических способностей на доступном для учащихся младшего школьного возраста математическом материале, поэтому в более или менее элементарном виде.

    3. Заметно развитие всех указанных выше компонентов у способных к математике учащихся от 2 к 4 классу: с годами усиливается тенденция к относительно полному аналитико-синтетическому восприятию условия задачи; более широким, быстрым и уверенным становится обобщение математического материала; происходит довольно заметное развитие способности к свёртыванию рассуждений и системы соответствующих действий, которая первоначально формируется на основе однотипных упражнений, а с годами всё чаще проявляется «с места»; к 4 классу учащиеся значительно легче переключаются с одной умственной операции на другую, качественно иную, чаще видят одновременно несколько способов решения задачи; память постепенно освобождается от хранения конкретного частного материала, всё большее значение приобретает запоминание математических отношений.

    4. У исследованных малоспособных (МС) учащихся младшего школьного возраста все перечисленные выше компоненты математических способностей проявляются на сравнительно низком уровне развития (способность к обобщению математического материала, гибкость мыслительных процессов) или не обнаруживаются совсем (способность к сокращению рассуждений и системы соответствующих действий, обобщённая математическая память).

    5. Сформировать основные компоненты математических способностей на более или менее удовлетворительном уровне в процессе экспериментального обучения можно было у детей группы МС только в результате упорного, настойчивого, систематического труда как со стороны экспериментатора, так и со стороны учащихся.

    6. Возрастные различия в развитии компонентов математических способностей у малоспособных к математике младших школьников выражены слабо и нечётко.

    В статье С.И. Шапиро «Психологический анализ структуры математических способностей в старшем школьном возрасте» показано, что в отличие от менее способных учащихся, у которых информация, как правило, хранится в памяти в узкоконкретной форме, разрозненно и недифференцированно, способные к математике учащиеся запоминают, используют и воспроизводят материал в обобщённом, «свёрнутом» виде.

    Значительный интерес представляет собой исследование математических способностей и их природных предпосылок И.А. Лёвочкиной , которая считает, что хотя математические способности и не были предметом специального рассмотрения в трудах Б.М.Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы – «Психология музыкальных способностей» и «Ум полководца», ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

    В обеих работах Б.М.Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б.М.Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке – слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

    Наиболее ярко роль общих способностей продемонстрирована в работе «Ум полководца». Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

    Важное место в интеллектуальной деятельности полководца занимает память. Совсем не обязательно, чтобы она была универсальной. Гораздо важнее, чтобы она обладала избирательностью, то есть удерживала, прежде всего, необходимые, существенные детали. В качестве классического примера такой памяти Б.М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

    Б.М. Теплов приходит к выводу, что «умение находить и выделять существенное и постоянная систематизация материала – вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца» . Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это, прежде всего, мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием «воля». Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

    Особое место в интеллектуальной деятельности полководца Б.М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б.М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

    Подтверждения положениям, проанализированным и обобщенным Б.М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков . Так, в психологическом этюде «Математическое творчество» Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом «озарения» необходимо следовал второй этап – тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций , которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

    Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок , в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода – есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием, поэтому не способны понимать математику. Другие – обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию, потому могут понимать и применять математику. Третьи – владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия .

    Здесь речь идет о математическом творчестве , доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера» . Для того, чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном – что нет и не может быть единственной ярко выраженной математической способности – это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

    Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Исследование математических способностей включает в себя и решение одной из важнейших проблем – поиска природных предпосылок, или задатков, данного вида способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

    Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С. Мерлин, 1986). Б.Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами «талант» и «призвание» (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э.А. Голубева, 1993).

    Основные принципы комплексного типологического подхода к изучению способностей и индивидуальности подробно изложены Э.А. Голубевой в соответствующей главе монографии. Одним из важнейших принципов является использование, наряду с качественным анализом, измерительных методов диагностики разных характеристик индивидуальности. Исходя из этого, И.А. Лёвочкина строила экспериментальное исследование математических способностей. В конкретную задачу входила диагностика свойств нервной системы, которые рассматривались в качестве задатков математических способностей, изучение личностных особенностей математически одаренных учащихся и особенностей их интеллекта. Эксперименты проводились на базе школы № 91 г. Москвы, в которой есть специализированные математические классы. В эти классы принимаются старшеклассники со всей Москвы, в основном победители районных и городских олимпиад, прошедшие дополнительное собеседование. Преподавание математики здесь ведется по более углубленной программе, дополнительно читается курс математического анализа. Исследование проводилось совместно с Е.П. Гусевой и учителем-экспериментатором В.М. Сапожниковым.

    Все ученики, с которыми довелось работать исследователю в 8-10 классах, уже определились в своих интересах и склонностях. Дальнейшую свою учебу и работу они связывают с математикой. Их успешность по математике значительно превосходит успешность учеников нематематических классов. Но при общей высокой успешности внутри этой группы учащихся наблюдаются существенные индивидуальные различия. Исследование строилось таким образом: учащихся наблюдали в процессе уроков, анализировали с помощью экспертов их контрольные работы, предлагали для решения экспериментальные задания, направленные на выявление некоторых компонентов математических способностей. Кроме того, с учащимися была проведена серия психологических и психофизиологических экспериментов. Изучались уровень развития и своеобразие интеллектуальных функций, выявлялись их личностные особенности и типологические особенности нервной системы. Всего на протяжении нескольких лет были обследованы 57 учеников с выраженными способностями к математике.

    Результаты

    Объективное измерение уровня интеллектуального развития при помощи теста Векслера у математически одаренных ребят показало, что большинство из них имеет очень высокий уровень общего интеллекта. Цифровые значения общего интеллекта многих учащихся, обследованных нами, превышали 130 баллов. Такой величины значения по некоторым нормативным классификациям обнаруживаются лишь у 2,2% населения. В подавляющем большинстве случаев наблюдали преобладание вербального интеллекта над невербальным. Сам по себе факт наличия высокоразвитого общего и вербального интеллекта у детей с выраженными математическими способностями не является неожиданным. Многие исследователи математических способностей отмечали, что высокая степень развития словесно-логических функций является необходимым условием для математических способностей. И.А. Лёвочкину интересовала не только количественная характеристика интеллекта, но и то, как она связана с психофизиологическими, природными особенностями учащихся. Индивидуальные особенности нервной системы диагностировались с помощью электроэнцефалографической методики. В качестве показателей свойств нервной системы были использованы фоновые и реактивные характеристики электроэнцефалограммы, запись которой производилась на 17-ти канальном энцефалографе. По этим показателям проводилась диагностика силы, лабильности и активированности нервной системы.

    И.А. Лёвочкина установила, используя статистические методы анализа, что более высокий уровень вербального и общего интеллекта в этой выборке имели обладатели более сильной нервной системы. Они же имели и более высокие оценки успеваемости по предметам естественного и гуманитарного циклов. По данным других исследователей, полученным на подростках-старшеклассниках общеобразовательных школ, более высокий уровень интеллекта и лучшую успеваемость имели обладатели слабой нервной системы (Голубева Э.А. с соавт. 1974, Кадыров Б.Р. 1977). Причину такого расхождения следует, вероятно, искать, прежде всего, в характере самой учебной деятельности. Учащиеся математических классов испытывают значительно большие учебные нагрузки, по сравнению с учениками обычных классов. С ними проводятся дополнительные факультативы, кроме того, помимо обязательных домашних и классных заданий, они решают множество заданий, связанных с подготовкой в высшие учебные заведения. Интересы этих ребят смещены в сторону повышенной постоянной умственной нагрузки. Такие условия деятельности предъявляют повышенные требования к выносливости, работоспособности, а поскольку главным, определяющим признаком свойства силы нервной системы является способность выдерживать длительное возбуждение, не входя в состояние запредельного торможения, то, видимо. поэтому наибольшую результативность демонстрируют те учащиеся, которые обладают такими характеристиками нервной системы, как выносливость, работоспособность.

    В.А. Крутецкий, изучая математическую деятельность способных к математике учеников, обращал внимание на их характерную особенность – способность к длительному поддержанию напряжения, когда ученик может долго и сосредоточенно заниматься, не обнаруживая усталости. Эти наблюдения позволили ему предположить, что такое свойство, как сила нервной системы, может являться одной из природных предпосылок, благоприятствующих развитию математических способностей. Полученные нами соотношения отчасти подтверждают это предположение. Почему лишь отчасти? Пониженная утомляемость в процессе занятий математикой отмечалась многими исследователями у способных к математике учеников по сравнению с неспособными к ней. И.А. Лёвочкина обследовала выборку, которая состояла только из способных учащихся. Однако среди них были не только обладатели сильной нервной системы, но и те, кто характеризовались как обладатели слабой нервной системы. Это означает, что не только высокая общая работоспособность, являющаяся благоприятной природной основой для успешности в данном виде деятельности, может обеспечивать развитие математических способностей.

    Анализ личностных особенностей показал, что в целом для группы учащихся с более слабой нервной системы оказались более характерны такие черты личности, как разумность, рассудительность, упорство (фактор J+ по Кеттеллу), а также независимость, самостоятельность (фактор Q2+). Лица с высокими оценками по фактору J уделяют много внимания планированию поведения, анализируют свои ошибки, проявляя при этом «осторожный индивидуализм». Высокие оценки по фактору Q2 имеют люди, склонные к самостоятельному принятию решений, способные нести за них ответственность. Этот фактор обозначается как «мыслящая интроверсия». Вероятно, обладатели слабой нервной системы достигают успешности в данном виде деятельности в том числе за счет формирования таких качеств, как планирование действий, самостоятельность.

    Можно также предположить, что разные полюса данного свойства нервной системы могут быть связаны с разными компонентами математических способностей. Так известно, что свойство слабости нервной системы характеризуется повышенной чувствительностью. Именно она может лежать в основе способности интуитивного, внезапного постижения истины, «озарения» или догадки, что является одним из важных компонентов математических способностей. И хотя это только предположение, но его подтверждение можно найти в конкретных примерах среди математически одаренных учеников. Вот два самых ярких таких примера . Дима на основании результатов объективной психофизиологической диагностики может быть отнесен к представителям сильного типа нервной системы. Он – «звезда первой величины» в математическом классе. Важно отметить то, что блестящих успехов он достигает без каких-либо видимых усилий, с легкостью. Никогда не жалуется на усталость. Уроки, занятия математикой являются для него необходимой постоянной умственной гимнастикой. Особое предпочтение отдается решению нестандартных, сложных задач, требующих напряжения мысли, глубокого анализа, строгой логический последовательности. Дима не допускает неточностей в изложении материала. Если учитель при объяснении делает логические пропуски, Дима обязательно обратит на это внимание. Его отличает высокая интеллектуальная культура. Это подтверждается и результатами тестирования. У Димы самый высокий в обследованной группе показатель общего интеллекта – 149 усл.ед.

    Антон – один из самых ярких представителей слабого типа нервной системы, которого нам довелось наблюдать среди математически одаренных ребят. Он очень быстро утомляется на уроке, не в состоянии долго и сосредоточенно работать, часто оставляет одни дела, чтобы без достаточного обдумывания взяться за другие. Случается, что он отказывается от решения задачи, если предвидит, что оно потребует больших усилий. Однако, несмотря на эти особенности, учителя очень высоко оценивают его математические способности. Дело в том, что он обладает прекрасной математической интуицией. Часто бывает, что он первым решает сложнейшие задания, выдавая конечный результат и опуская при этом все промежуточные этапы решения. Для него характерна способность к «озарению». Он не затрудняет себя объяснением, почему выбрано именно такое решение, но на проверку оно оказывается оптимальным и оригинальным.

    Математические способности очень сложны и многогранны по своей структуре. И тем не менее, выделяются как бы два основных типа людей с их проявлением – это «геометры» и «аналитики». В истории математики яркими примерами этого могут являться такие имена, как Пифагор и Евклид (крупнейшие геометры), Ковалевская и Клейн (аналитики, создатели теории функций). В основе такого деления лежат прежде всего индивидуальные особенности восприятия действительности, в том числе и математического материала. Оно определяется не предметом, над которым работает математик: аналитики и в геометрии остаются аналитиками, тогда как геометры любую математическую реальность предпочитают воспринимать образно. В этой связи уместно привести высказывание А. Пуанкаре: «Отнюдь не обсуждаемый ими вопрос заставляет их использовать тот или другой метод. Если часто об одних говорят, что они аналитики, а других называют геометрами, то это не мешает тому, что первые остаются аналитиками, даже когда занимаются вопросами геометрии, в то время как другие являются геометрами, даже если занимаются чистым анализом» .

    В школьной практике при работе с одаренными учащимися эти различия проявляются не только в разной успешности овладения разными разделами математики, но и в предпочтительном отношении к принципам решения задач. Одни ученики любые задачи стремятся решить с помощью формул, логического рассуждения, другие по возможности используют пространственные представления. Причем эти различия являются весьма устойчивыми. Конечно, среди учеников встречаются и такие, у которых наблюдается определенное равновесие этих характеристик. Они одинаково ровно овладевают всеми разделами математики, используя при этом разные принципы подхода к решению разных задач. Индивидуальные различия между учащимися в подходах к решению задач и методах их решения были выявлены И.А. Лёвочкиной не только благодаря наблюдению за учащимися при работе на уроках, но и экспериментальным путем. Для анализа отдельных компонентов математических способностей учителем-экспериментатором В.М. Сапожниковым была разработана серия специальных экспериментальных задач. Анализ результатов решения задач этой серии позволил получить объективное представление о характере мыслительной деятельности школьников и о соотношении образного и аналитического компонентов математического мышления.

    Были выявлены учащиеся, которые лучше справлялись с решением алгебраических задач, а также те, кто лучше решал геометрические задачи. Эксперимент показал, что среди учащихся есть представители аналитического типа математического мышления, которые характеризуются явным преобладанием вербально-логического компонента. У них нет потребности в наглядных схемах, они предпочитают оперировать знаковыми символами. Мышление учащихся, оказывающих предпочтение геометрическим заданиям, характеризуется большей выраженностью наглядно-образного компонента. Эти учащиеся испытывают потребность в наглядном представлении и интерпретации в выражении математических отношений и зависимостей.

    Из общего числа математически одаренных учеников, принявших участие в экспериментах, были выделены самые яркие «аналитики» и «геометры», составившие две крайние группы. В группу «аналитиков» вошли 11 человек, наиболее ярких представителей вербально-логического типа мышления. Группа «геометров» состояла из 5 человек, с ярким наглядно-образным типом мышления. Тот факт, что в группу ярких представителей «геометров» удалось отобрать значительно меньше учеников, можно объяснить, на наш взгляд, следующим обстоятельством. При проведении математических конкурсов и олимпиад недостаточно учитывается роль наглядно-образных компонентов мышления. В конкурсных заданиях удельный вес задач по геометрии невысок – из 4 – 5 заданий в лучшем случае одно направлено на выявление пространственных представлений у учащихся. Тем самым при отборе как бы «отсекаются» потенциально способные математики-геометры с ярким наглядно-образным типом мышления. Дальнейший анализ проводился с использованием статистического метода сравнения групповых различий (t-критерий Стьюдента) по всем, имевшимся в распоряжении психофизиологическим и психологическим показателям.

    Известно, что типологическая концепция И.П. Павлова помимо физиологической теории свойств нервной системы включала в себя классификацию специально человеческих типов высшей нервной деятельности, различающихся по соотношению сигнальных систем. Это – «художники», с преобладанием первой сигнальной системы, «мыслители», с преобладанием второй сигнальной системы, и средний тип, с равновесием обеих систем. Для «мыслителей» наиболее характерным является абстрактно-логический способ переработки информации, тогда как «художники» обладают ярким образным целостным восприятием действительности. Безусловно, эти различия не носят абсолютный характер, а отражают лишь преимущественные формы реагирования. Те же принципы лежат в основе различий между «аналитиками» и «геометрами». Первые предпочитают аналитические способы решения любых математических задач, то есть по типу приближаются к «мыслителям». «Геометры» стремятся вычленить в задачах образные компоненты, тем самым действуют так, как характерно для «художников».

    В последнее время появился ряд работ, в которых предпринимались попытки объединить учение об основных свойствах нервной системы с представлениями о специально человеческих типах – «художниках» и «мыслителях». Установлено, что к «художественному» типу тяготеют обладатели сильной, лабильной и активированной нервной системы, а к «мыслительному» – слабой, инертной и инактивированной нервной системы (Печенков В.В., 1989). В работе И.А. Лёвочкиной из показателей различных свойств нервной системы наиболее информативной психофизиологической характеристикой при диагностике типов математического мышления оказалась характеристика свойства силы–слабости нервной системы. В группу «аналитиков» вошли обладатели относительно более слабой нервной системы, по сравнению с группой «геометров», то есть выявленные различия между группами по свойству силы–слабости нервной системы оказались в русле ранее полученных результатов. По двум другим свойствам нервной системы (лабильности, активированности) статистически значимых различий установлено не было, а наметившиеся тенденции не противоречат исходным предположениям.

    Проведен также сравнительный анализ результатов диагностики личностных особенностей, полученных с помощью опросника Кэттелла. Статистически значимые различия между группами были установлены по двум факторам – Н и J. По фактору Н группу «аналитиков» можно в целом характеризовать как относительно более сдержанную, с ограниченным кругом интересов (Н-). Обычно люди с низкими показателями по этому фактору замкнуты, не стремятся к дополнительным контактам с людьми. Группа «геометров» имеет по этому личностному фактору большие величины (Н+) и отличается по нему определенной беззаботностью, общительностью. Такие люди не испытывают трудностей в общении, много и охотно идут на контакты, не теряются в неожиданных обстоятельствах. Они артистичны, способны выдерживать значительные эмоциональные нагрузки. По фактору J, который в целом характеризует такую черту личности, как индивидуализм, группа «аналитиков» имеет высокие среднегрупповые значения. Это означает, что им свойственны разумность, рассудительность, упорство. Люди, имеющие высокий вес по этому фактору, уделяют много внимания планированию своего поведения, при этом оставаясь замкнутыми и действуя индивидуально.

    В противовес им, ребята, входящие в группу «геометров», энергичны, экспрессивны. Они любят совместные действия, готовы включиться в групповые интересы и проявить при этом свою активность. Наметившиеся различия показывают, что исследуемые группы математически одаренных учащихся наиболее расходятся по двум факторам, которые, с одной стороны, характеризуют определенную эмоциональную направленность (сдержанность, рассудительность – беззаботность, экспрессивность), с другой, особенности в межличностных отношениях (замкнутость – общительность). Интересно, что описание этих черт в значительной степени совпадает с описанием типов экстравертов–интровертов, предложенных Айзенком. В свою очередь, эти типы имеют определенную психофизиологическую интерпретацию. Экстраверты – это сильные, лабильные, активированные; интроверты – слабые, инертные, инактивированные. Тот же набор психофизиологических характеристик получен для специально человеческих типов высшей нервной деятельности – «художников» и «мыслителей».

    Результаты, полученные И.А. Лёвочкиной, позволяют выстроить определенные синдромы взаимосвязи психофизиологических, психологических признаков и типов математического мышления.

    «Аналитики» «Геометры»

    (абстрактно-логический (наглядно-образный тип мышления)

    тип мышления)

    Слабая н.с. Сильная н.с. рассудительность беззаботность замкнутость общительность интроверты экстраверты

    Таким образом, проведенное И.А. Лёвочкиной комплексное исследование математически одаренных школьников позволило экспериментально подтвердить наличие определенного сочетания психологических и психофизиологических факторов, составляющих благоприятную основу для развития математических способностей. Это касается как общих, так и специальных моментов в проявлении данного вида способностей.

    Несколько слов о способностях к чтению чертежей .

    В исследовании Н. П. Линьковой «Способности к чтению чертежей у младших школьников» доказано, что умение читать и выполнять чертежи – одно из условий, обеспечивающих успешность деятельности в области техники. Поэтому изучение способностей к чтению чертежей входит в качестве составной части в исследование, посвященное техническому творчеству.

    Обычно конструктор использует чертежи для выражения мыслей, возникающих у него в процессе решения задачи.

    Конструктору необходим такой уровень владения навыками чтения чертежей, при котором сам процесс создания образа по его плоскому изображению превращается из специальной цели в средство, помогающее решать какую-либо другую задачу.

    Разница между этими двумя уровнями владения навыками чтения чертежей заключается не только в том, какая цель при этом ставится – представить объект по его изображению или использовать полученный образ для решения какой-либо задачи, но и в самом характере деятельности.

      Эксперименты, проведённые с младшими школьниками, подтвердили результаты, полученные в работе с учениками старших классов.

    Для успешного овладения приёмами чтения чертежей наиболее важной является способность ученика к определённым логическим операциям. К ним, прежде всего, относится умение проводить логический анализ изображений и соотносить их между собой, выдвигать гипотезы, предвосхищающие решения, делать логические заключения на основе имеющихся изображений и проводить необходимую проверку своих предположений.

    Способность к овладению такого рода операциями, условно названную способностью к логическому мышлению, можно считать центральной среди компонентов, обеспечивающих успешное овладение приёмами чтения чертежей.

    Она должна сочетаться с гибкостью мышления, со способностью отказываться от неправильного пути, по которому пошло решение, или даже от уже полученного решения.

    Мысленное представление образа объекта на основе его изображения может возникнуть только в результате такого анализа.

    Появление образа является результатом определённых действий. Если задача для ученика слишком лёгкая, эти действия носят свёрнутый, малозаметный характер. Но они сразу же проявляются в случае усложнения задачи или появления в ходе решения каких-либо затруднений.

    Успешность чтения чертежей обеспечивается одновременно и логическим анализом изображения, и деятельностью пространственного воображения, без которого невозможно возникновение образа. Однако логическому анализу принадлежит в этой работе ведущая роль. Он определяет направление поиска решения – неудачный или неполный анализ приводит к появлению неправильного образа.

    Способность к созданию устойчивых и ярких образов в данной ситуации только усложнит положение.

    2. Эксперименты показали, что у некоторых учеников младшего школьного возраста компоненты способностей, необходимые для овладения приёмами чтения чертежей, достигли такого уровня, что они без всяких затруднений выполняют самые разнообразные задания из школьного курса черчения.

    У большей же части учеников этого возраста необходимость проводить логический анализ изображений, делать умозаключения и обосновывать свои решения вызывает серьёзные затруднения. Речь идёт о степени развития способности к логическому мышлению.

    Вывод: обучение проекционному черчению можно начинать в начальной школе. Возможность организации такого обучения была проверена в ходе специального эксперимента, проведённого совместно с Э.А. Фарапоновой (Линькова, Фарапонова, 1967).

    Но при организации такого обучения в методику должны быть внесены серьёзные изменения.

    Эти изменения должны, прежде всего, идти по линии ослабления на первом этапе обучения требований к логическому анализу. Не менее важно, если не разгрузить, то хотя бы не усложнять требований, предъявляемых к пространственному воображению введением таких приёмов объяснения материала, как проектирование точек на плоскости трёхгранного угла, мысленный поворот моделей или их изображений.

    Объясняется данное требование не столько слабым развитием у детей этого возраста пространственного воображения (большей частью оно оказывается достаточно развитым), сколько их неподготовленностью к одновременному выполнению нескольких операций.

      Проведённое исследование показало наличие очень больших индивидуальных различий между учениками в степени развития у них способностей, необходимых для овладения приёмами чтения чертежей, начиная с момента прихода их в школу. Вопрос о причинах этих различий и о путях развития данных способностей не рассматривается в исследовании Н.П. Линьковой.

    ← Вернуться

    ×
    Вступай в сообщество «parkvak.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «parkvak.ru»