Регрессионный анализ данных пример. Методы математической статистики

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Регрессионный анализ -- метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики, и предназначаются для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей.

Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных. Теория вероятностей и математическая статистика представляют лишь инструмент для изучения статистической зависимости, но не ставят своей целью установление причинной связи. Представления и гипотезы о причинной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Числовые данные обычно имеют между собой явные (известные) или неявные (скрытые) связи.

Явно связаны показатели, которые получены методами прямого счета, т. е. вычислены по заранее известным формулам. Например, проценты выполнения плана, уровни, удельные веса, отклонения в сумме, отклонения в процентах, темпы роста, темпы прироста, индексы и т. д.

Связи же второго типа (неявные) заранее неизвестны. Однако необходимо уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т. е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.

Математические модели строятся и используются для трех обобщенных целей:

  • * для объяснения;
  • * для предсказания;
  • * для управления.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели.

Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений.

Постановка задачи регрессионного анализа формулируется следующим образом.

Имеется совокупность результатов наблюдений. В этой совокупности один столбец соответствует показателю, для которого необходимо установить функциональную зависимость с параметрами объекта и среды, представленными остальными столбцами. Требуется: установить количественную взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y = f (x2, x3, …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные.

Допущения:

количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей;

обрабатываемые данные содержат некоторые ошибки (помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов;

матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования.

Функция f (x2, x3, …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода.

Решение задачи регрессионного анализа целесообразно разбить на несколько этапов:

предварительная обработка данных;

выбор вида уравнений регрессии;

вычисление коэффициентов уравнения регрессии;

проверка адекватности построенной функции результатам наблюдений.

Предварительная обработка включает стандартизацию матрицы данных, расчет коэффициентов корреляции, проверку их значимости и исключение из рассмотрения незначимых параметров.

Выбор вида уравнения регрессии Задача определения функциональной зависимости, наилучшим образом описывающей данные, связана с преодолением ряда принципиальных трудностей. В общем случае для стандартизованных данных функциональную зависимость показателя от параметров можно представить в виде

y = f (x1, x2, …, xm) + e

где f - заранее не известная функция, подлежащая определению;

e - ошибка аппроксимации данных.

Указанное уравнение принято называть выборочным уравнением регрессии. Это уравнение характеризует зависимость между вариацией показателя и вариациями факторов. А мера корреляции измеряет долю вариации показателя, которая связана с вариацией факторов. Иначе говоря, корреляцию показателя и факторов нельзя трактовать как связь их уровней, а регрессионный анализ не объясняет роли факторов в создании показателя.

Еще одна особенность касается оценки степени влияния каждого фактора на показатель. Регрессионное уравнение не обеспечивает оценку раздельного влияния каждого фактора на показатель, такая оценка возможна лишь в случае, когда все другие факторы не связаны с изучаемым. Если изучаемый фактор связан с другими, влияющими на показатель, то будет получена смешанная характеристика влияния фактора. Эта характеристика содержит как непосредственное влияние фактора, так и опосредованное влияние, оказанное через связь с другими факторами и их влиянием на показатель.

В регрессионное уравнение не рекомендуется включать факторы, слабо связанные с показателем, но тесно связанные с другими факторами. Не включают в уравнение и факторы, функционально связанные друг с другом (для них коэффициент корреляции равен 1). Включение таких факторов приводит к вырождению системы уравнений для оценок коэффициентов регрессии и к неопределенности решения.

Функция f должна подбираться так, чтобы ошибка e в некотором смысле была минимальна. В целях выбора функциональной связи заранее выдвигают гипотезу о том, к какому классу может принадлежать функция f, а затем подбирают "лучшую" функцию в этом классе. Выбранный класс функций должен обладать некоторой "гладкостью", т.е. "небольшие" изменения значений аргументов должны вызывать "небольшие" изменения значений функции.

Частным случаем, широко применяемым на практике, является полином первой степени или уравнение линейной регрессии

Для выбора вида функциональной зависимости можно рекомендовать следующий подход:

в пространстве параметров графически отображают точки со значениями показателя. При большом количестве параметров можно строить точки применительно к каждому из них, получая двумерные распределения значений;

по расположению точек и на основе анализа сущности взаимосвязи показателя и параметров объекта делают заключение о примерном виде регрессии или ее возможных вариантах;

после расчета параметров оценивают качество аппроксимации, т.е. оценивают степень близости расчетных и фактических значений;

если расчетные и фактические значения близки во всей области задания, то задачу регрессионного анализа можно считать решенной. В противном случае можно попытаться выбрать другой вид полинома или другую аналитическую функцию, например периодическую.

Вычисление коэффициентов уравнения регрессии

Систему уравнений на основе имеющихся данных однозначно решить невозможно, так как количество неизвестных всегда больше количества уравнений. Для преодоления этой проблемы нужны дополнительные допущения. Здравый смысл подсказывает: желательно выбрать коэффициенты полинома так, чтобы обеспечить минимум ошибки аппроксимации данных. Могут применяться различные меры для оценки ошибок аппроксимации. В качестве такой меры нашла широкое применение среднеквадратическая ошибка. На ее основе разработан специальный метод оценки коэффициентов уравнений регрессии - метод наименьших квадратов (МНК). Этот метод позволяет получить оценки максимального правдоподобия неизвестных коэффициентов уравнения регрессии при нормальном распределения вариант, но его можно применять и при любом другом распределении факторов.

В основе МНК лежат следующие положения:

значения величин ошибок и факторов независимы, а значит, и некоррелированы, т.е. предполагается, что механизмы порождения помехи не связаны с механизмом формирования значений факторов;

математическое ожидание ошибки e должно быть равно нулю (постоянная составляющая входит в коэффициент a0), иначе говоря, ошибка является центрированной величиной;

выборочная оценка дисперсии ошибки должна быть минимальна.

Если же линейная модель неточна или параметры измеряются неточно, то и в этом случае МНК позволяет найти такие значения коэффициентов, при которых линейная модель наилучшим образом описывает реальный объект в смысле выбранного критерия среднеквадратического отклонения.

Качество полученного уравнения регрессии оценивают по степени близости между результатами наблюдений за показателем и предсказанными по уравнению регрессии значениями в заданных точках пространства параметров. Если результаты близки, то задачу регрессионного анализа можно считать решенной. В противном случае следует изменить уравнение регрессии и повторить расчеты по оценке параметров.

При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них.

Анализируя сущность уравнения регрессии, следует отметить следующие положения. Рассмотренный подход не обеспечивает раздельной (независимой) оценки коэффициентов - изменение значения одного коэффициента влечет изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся данных, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза. Для индивидуальных значений показателя интервал должен учитывать ошибки в положении линии регрессии и отклонения индивидуальных значений от этой линии .

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.

Характеристика причинных зависимостей

Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия.

Признаки по их значению для изучения взаимосвязи делятся на два класса.

Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными (или факторами).

Признаки, изменяющиеся под действием факторных признаков, являются результативными.

Различают следующие формы связи: функциональную и стохастическую. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.

Функциональную связь можно представить следующим уравнением:
y i =f(x i), где: y i - результативный признак; f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.
В реальной природе функциональных связей нет. Они являются лишь абстракциями, полезными при анализе явлений, но упрощающими реальность.

Стохастическая (статистическая или случайная) связь представляет собой связь между величинами, при которой одна из них реагирует на изменение другой величины или других величин изменением закона распределения. Иными словами, при данной связи разным значениям одной переменной соответствуют разные распределения другой переменной. Это обуславливается тем, что зависимая переменная, кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых случайных факторов, а также некоторых неизбежных ошибок измерения переменных. В связи с тем, что значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а могут быть только указаны с определенной вероятностью.

В силу неоднозначности стохастической зависимости между Y и X, в частности представляет интерес усредненная по х схема зависимости, т.е. закономерность в изменении среднего значения – условного математического ожидания Мх(У) (математического ожидания случайной переменной У, найденного при условии, что переменная Х приняла значение х) в зависимости от х.

Частным случаем стохастической связи является корреляционная связь. Корреля́ция (от лат. correlatio - соотношение, взаимосвязь). Прямое токование термина корреляция - стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.

Корреляционной зависимостью между двумя переменными также называют статистическую взаимосвязь между этими переменными, при которой каждому значению одной переменной соответствует определенное среднее значение, т.е. условное математическое ожидание другой. Корреляционная зависимость является частным случаем стохастиче­ской зависимости, при которой изменение значений факторных признаков (х 1 х 2 ..., х n) влечет за собой изменение среднего значения результативно­го признака.



Принято различать следующие виды корреляции:

1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

2. Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков, включенных в исследование.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Назначение регрессионного анализа

Аналитической формой представления причинно-следственных отношений являются регрессионные модели. Научная обоснованность и популярность регрессионного анализа делает его одним из основных математических средств моделирования исследуемого явления. Этот метод применяется для сглаживания экспериментальных данных и получения количественных оценок сравнительного влияния различных факторов на результативную переменную.

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (зависимой переменной или результативного признака) обусловлено влиянием одной или нескольких независимых величин (факторов или предикторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения.

Цели регрессионного анализа:

Оценка функциональной зависимости условного среднего значения результативного признака у от факторных (х 1 ,х 2 , …, х n);

Предсказание значения зависимой переменной с помощью независимой(-ых).

Определение вклада отдельных независимых переменных в вариацию зависимой переменной.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

В регрессионном анализе зара­нее подразумевается наличие причинно-следственных связей между ре­зультативным (У) и факторными х 1 , х 2 ..., х n признаками.

Функция , оп исывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии 1 . Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях независимых переменных .
В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии). В зависимости от вида функции модели делятся на линейные и нелинейные.

Парная регрессионная модель

В силу воздействия неучтенных случайных факторов и причин отдельные наблюдения у будут в большей или меньшей мере отклоняться от функции регрессии f(х). В этом случае уравнение взаимосвязи двух переменных (парная регрессионная модель) может быть представлено в виде:

Y=f(X) + ɛ,

где ɛ - случайная переменная, характеризующая отклонение от функции регрессии. Эту переменную называют возмущающей или возмущением (остатком или ошибкой). Таким образом, в регрессионной модели зависимая переменная Y есть некоторая функция f(X) с точностью до случайного возмущения ɛ.

Рассмотрим классическую линейную модель парной регрессии (КЛМПР). Она имеет вид

у i =β 0 +β 1 х i +ɛ i (i=1,2, …, n), (1)

где у i –объясняемая (результирующая, зависимая, эндогенная переменная);х i – объясняющая (предикторная, факторная, экзогенная) переменная; β 0 , β 1 – числовые коэффициенты; ɛ i – случайная (стохастическая) составляющая или ошибка.

Основные условия (предпосылки, гипотезы) КЛМПР:

1) х i – детерминированная (неслучайная) величина, при этом предполагается, что среди значений х i – не все одинаковые.

2) Математическое ожидание (среднее значение) возмущения ɛ i равно нулю:

М[ɛ i ]=0 (i=1,2, …, n).

3) Дисперсия возмущения постоянна для любых значений i (условие гомоскедастичности):

D[ɛ i ]=σ 2 (i=1,2, …, n).

4) Возмущения для разных наблюдений являются некоррелированными:

cov[ɛ i , ɛ j ]=M[ɛ i , ɛ j ]=0 при i≠j,

где cov[ɛ i , ɛ j ] – коэффициент ковариации (корреляционный момент).

5) Возмущения являются нормально распределенными случайными величинами с нулевым средним значением и дисперсией σ 2:

ɛ i ≈ N(0, σ 2).

Для получения уравнения регрессии достаточно первых четырех предпосылок. Требование выполнения пятой предпосылки необходимо для оценки точности уравнения регрессии и его параметров.

Замечание: Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют (путём логарифмирования или замены переменных) в линейную форму.

Традиционный метод наименьших квадратов (МНК)

Оценкой модели по выборке является уравнение

ŷ i = a 0 + a 1 x i (i=1,2, …, n), (2)

где ŷ i – теоретические (аппроксимирующие) значения зависимой переменной, полученные по уравнению регрессии; a 0 , a 1 - коэффициенты (параметры) уравнения регрессии (выборочные оценки коэффициентов β 0 , β 1 соответственно).

Согласно МНК неизвестные параметры a 0 , a 1 выбирают так, чтобы сумма квадратов отклонений значений ŷ i от эмпирических значений y i (остаточная сумма квадратов) была минимальной:

Q e =∑e i 2 = ∑(y i – ŷ i) 2 = ∑(yi – (a 0 + a 1 x i)) 2 → min, (3)

где e i = y i - ŷ i – выборочная оценка возмущения ɛ i , или остаток регрессии.

Задача сводится к отысканию таких значений параметров a 0 и a 1 , при которых функция Q e принимает наименьшее значение. Заметим, что функция Q e = Q e (a 0 , a 1) есть функция двух переменных a 0 и a 1 до тех пор, пока мы не нашли, а затем зафиксировали их «наилучшие» (в смысле метода наименьших квадратов) значения, а х i , y i – постоянные числа, найденные экспериментально.

Необходимые условия экстремума (3) находятся путем приравнивания к нулю частных производных этой функции двух переменных. В результате получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

(4)

Коэффициент a 1 – выборочный коэффициент регрессии у на х, который показывает на сколько единиц в среднем изменяется переменная у при изменении переменной х на одну единицу своего измерения, то есть вариацию у, приходящуюся на единицу вариации х. Знак a 1 указывает направление этого изменения. Коэффициент a 0 – смещение, согласно (2) равен значению ŷ i при х=0 и может не иметь содержательной интерпретации. За это иногда зависимую переменную называют откликом.

Статистические свойства оценок коэффициентов регрессии:

Оценки коэффициентов a 0 , a 1 являются несмещенными;

Дисперсии оценок a 0 , a 1 уменьшаются (точность оценок увеличивается) при увеличении объема выборки n;

Дисперсия оценки углового коэффициента a 1 уменьшается при увеличении и поэтому желательно выбирать х i так, чтобы их разброс вокруг среднего значения был большим;

При х¯ > 0 (что представляет наибольший интерес) между a 0 и a 1 имеется отрицательная статистическая связь (увеличение a 1 приводит к уменьшению a 0).

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х 1, х 2,…, х к отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х 1, х 2,…, х к) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. -regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

где - е случайная величина, имеющая нормальный закон распределения, причем Ме = 0 и D е = у 2 . Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х 1.5 .

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+е, и представленной на рис. 1

Рисунок 1 - Взаимное расположение истиной f (х) и теоретической? модели регрессии

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида? = в 0 +в 1 x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b 0 +b 1 x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х 1,5 , теоретической аппроксимирующей функции регрессии? = в 0 +в 1 x .

Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью? объяснялась бы только ограниченностью выборки.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений,? = f(х i), где, х i - значение вектора аргументов в i-м наблюдении: ?(y i - f(х i) 2 > min. Получаемая регрессия называется среднеквадратической.

Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем,? = f(х i), среднеабсолютную медианную регрессию? |y i - f(х i)| >min.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных х j = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения х j.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у, являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией у 2 .

В общем линейная модель регрессионного анализа имеет вид:

Y = Уk j=0 вj цj (x1 , x2 . . .. ,xk )+Э

где ц j - некоторая функция его переменных - x 1 , x 2 . . .. ,x k , Э - случайная величина с нулевым математическим ожиданием и дисперсией у 2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=в 0 + в 1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; в 0 и в 1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров в 0 и в 1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

y j = в 0 + в 1 x+е j .

где е j .- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией у 2 , т. е. М е j . = 0;

D е j .= у 2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров в 0 и в 1 следует брать такие значения выборочных характеристик b 0 и b 1 , которые минимизируют сумму квадратов отклонений значений результативного признака у i от условного математического ожидания? i

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

* инновационная деятельность предприятия;

* планирование ассортимента производимой продукции;

* формирование ценовой политики;

* взаимоотношения с общественностью;

* система сбыта;

* система стимулирования работников.

На основе системы сравнений по факторам были построены квадратные матрицы смежности, в которых вычислялись значения относительных приоритетов по каждому фактору: инновационная деятельность предприятия, планирование ассортимента производимой продукции, формирование ценовой политики, реклама, взаимоотношения с общественностью, система сбыта, система стимулирования работников.

Оценки приоритетов по фактору «взаимоотношения с общественностью» получены в результате анкетирования специалистов предприятия. Приняты следующие обозначения: > (лучше), > (лучше или одинаково), = (одинаково), < (хуже или одинаково), <

Далее решалась задача комплексной оценки уровня маркетинга предприятия. При расчете показателя была определена значимость (вес) рассмотренных частных признаков и решалась задача линейного свертывания частных показателей. Обработка данных производилась по специально разработанным программам.

Далее рассчитывается комплексная оценка уровня маркетинга предприятия -- коэффициент маркетинга, который вносится в таблице 1. Кроме того, в названую таблицу включены показатели, характеризующие предприятие в целом. Данные в таблице будут использованы для проведения регрессионного анализа. Результативным признаком является прибыль. В качестве факторных признаков наряду с коэффициентом маркетинга использованы следующие показатели: объем валовой продукции, стоимость основных фондов, численность работников, коэффициент специализации.

Таблица 1 - Исходные данные для регрессионного анализа


По данным таблицы и на основе факторов с наиболее существенными значениями коэффициентов корреляции были построены регрессионные функции зависимости прибыли от факторов.

Уравнение регрессии в нашем случае примет вид:

О количественном влиянии рассмотренных выше факторов на величину прибыли говорят коэффициенты уравнения регрессии. Они показывают, на сколько тысяч рублей изменяется ее величина при изменении факторного признака на одну единицу. Как следует из уравнения, увеличение коэффициента комплекса маркетинга на одну единицу дает прирост прибыли на 1547,7 тыс. руб. Это говорит о том, что в совершенствовании маркетинговой деятельности кроется огромный потенциал улучшения экономических показателей предприятий.

При исследовании эффективности маркетинга наиболее интересным и самым важным факторным признаком является фактор Х5 -- коэффициент маркетинга. В соответствии с теорией статистики достоинство имеющегося уравнения множественной регрессии является возможность оценивать изолированное влияние каждого фактора, в том числе фактора маркетинга.

Результаты проведенного регрессионного анализа имеют и более широкое применение, чем для расчета параметров уравнения. Критерий отнесения (КЭф,) предприятий к относительно лучшим или относительно худшим основан на относительном показателе результата:

где Y фактi - фактическая величина i-го предприятия, тыс. руб.;

Y расчi -величина прибыли i-го предприятия, полученная расчетным путем по уравнению регрессии

В терминах решаемой задачи величина носит название «коэффициент эффективности». Деятельность предприятия можно признать эффективной в тех случаях, когда величина коэффициента больше единицы. Это означает, что фактическая прибыль больше прибыли, усредненной по выборке.

Фактические и расчетные значения прибыли представлены в табл. 2.

Таблица 2 - Анализ результативного признака в регрессионной модели

Анализ таблицы показывает, что в нашем случае деятельность предприятий 3, 5, 7, 9, 12, 14, 15, 17 за рассматриваемый период можно признать успешной.

Метод регрессивного анализа применяется для определения технико-экономических параметров продукции, относящейся к конкретному параметрическому ряду, с целью построения и выравнивания ценностных соотношений. Этот метод используется для анализа и обоснования уровня и соотношений цен продукции, характеризующейся наличием одного или нескольких технико-экономических параметров, отражающих основные потребительские свойства. Регрессивный анализ позволяет найти эмпирическую формулу, описывающую зависимость цены от технико-экономических параметров изделий:

P=f(X1X2,...,Xn),

где Р - значение цены единицы изделия, руб.; (Х1, Х2, ... Хп) - технико-экономические параметры изделий.

Метод регрессивного анализа - наиболее совершенный из используемых нормативно-параметрических методов - эффективен при проведении расчетов на основе применения современных информационных технологий и систем. Применение его включает следующие основные этапы:

  • определение классификационных параметрических групп изделий;
  • отбор параметров, в наибольшей степени влияющих на цену изделия;
  • выбор и обоснование формы связи изменения цены при изменении параметров;
  • построение системы нормальных уравнений и расчет коэффициентов регрессии.

Основной квалификационной группой изделий, цена которых подлежит выравниванию, является параметрический ряд, внутри которого изделия могут группироваться по различному исполнению в зависимости от их применения, условий и требований эксплуатации и т. д. При формировании параметрических рядов могут быть применены методы автоматической классификации, которые позволяют из общей массы продукции выделять ее однородные группы. Отбор технико-экономических параметров производится исходя из следующих основных требований:

  • в состав отобранных параметров включаются параметры, зафиксированные в стандартах и технических условиях; помимо технических параметров (мощности, грузоподъемности, скорости и т.д.) используются показатели серийности продукции, коэффициенты сложности, унификации и др.;
  • совокупность отобранных параметров должна достаточно полно характеризовать конструктивные, технологические и эксплуатационные свойства изделий, входящих в ряд, и иметь достаточно тесную корреляционную связь с ценой;
  • параметры не должны быть взаимозависимы.

Для отбора технико-экономических параметров, существенно влияющих на цену, вычисляется матрица коэффициентов парной корреляции. По величине коэффициентов корреляции между параметрами можно судить о тесноте их связи. При этом близкая к нулю корреляция показывает незначительное влияние параметра на цену. Окончательный отбор технико-экономических параметров производится в процессе пошагового регрессивного анализа с использованием компьютерной техники и соответствующих стандартных программ.

В практике ценообразования применяется следующий набор функций:

линейная

P = ao + alXl + ... + antXn,

линейно-степенная

Р = ао + а1Х1 + ... + аnХп + (ап+1Хп) (ап+1Хп) +... + (ап+nХп2) (ап+nХп2)

обратного логарифма

Р = а0 + а1: In Х1 + ... + ап: In Xn,

степенная

P = a0 (X1^a1) (X2^a2) .. (Xn^an)

показательная

P = e^(а1+а1X1+...+аnХn)

гиперболическая

Р = ао + а1:Х1 + а2:Х2 + ... + ап:Хп,

где Р - выравнивание цены; X1 X2,..., Хп - значение технико-экономических параметров изделий ряда; a0, a1 ..., аn - вычисляемые коэффициенты уравнения регресии.

В практической работе по ценообразованию в зависимости от формы связи цен и технико-экономических параметров могут использоваться другие уравнения регрессии. Вид функции связи между ценой и совокупностью технико-экономических параметров может быть задан предварительно или выбран автоматически в процессе обработки на ЭВМ. Теснота корреляционной связи между ценой и совокупностью параметров оценивается по величине множественного коэффициента корреляции. Близость его к единице говорит о тесной связи. По уравнению регрессии получают выравненные (расчетные) значения цен изделий данного параметрического ряда. Для оценки результатов выравнивания вычисляют относительные величины отклонения расчетных значений цен от фактических:

Цр = Рф - Рр: Р х 100

где Рф, Рр - фактическая и расчетная цены.

Величина Цр не должна превышать 8-10%. В случае существенных отклонений расчетных значений от фактических необходимо исследовать:

  • правильность формирования параметрического ряда, так как в его составе могут оказаться изделия, по своим параметрам резко отличающиеся от других изделий ряда. Их надо исключить;
  • правильность отбора технико-экономических параметров. Возможна совокупность параметров, слабо коррелируемая с ценой. В этом случае необходимо продолжить поиск и отбор параметров.

Порядок и методика проведения регрессивного анализа, нахождения неизвестных параметров уравнения и экономическая оценка полученных результатов осуществляются в соответствии с требованиями математической статистики.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»