По заданному значению дискретной случайной величины. Примеры решения задач на тему «Случайные величины

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

В приложениях теории вероятностей основное значение имеет количественная характеристика эксперимента. Величина, которая может быть количественно определена и которая в результате эксперимента может принимать в зависимости от случая различные значения, называется случайной величиной.

Примеры случайных величин:

1. Число выпадений четного числа очков при десяти бросаниях игральной кости.

2. Число попаданий в мишень стрелком, который производит серию выстрелов.

3. Число осколков разорвавшегося снаряда.

В каждом из приведенных примеров случайная величина может принимать лишь изолированные значения, то есть значения, которые можно пронумеровать с помощью натурального ряда чисел.

Такая случайная величина, возможные значения которой есть отдельные изолированные числа, которые эта величина принимает с определенными вероятностями, называется дискретной.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Законом распределения дискретной случайной величины называют перечень её возможных значений и соответствующих им вероятностей. Закон распределения дискретной случайной величины можно задать в виде таблицы (ряд распределения вероятностей), аналитически и графически (многоугольник распределения вероятностей).

При осуществлении того или иного эксперимента возникает необходимость оценивать изучаемую величину «в среднем». Роль среднего значения случайной величины играет числовая характеристика, называемая математическим ожиданием, которая определяется формулой

где x 1 , x 2 ,.. , x n – значения случайной величины X , а p 1 , p 2 , ... , p n – вероятности этих значений (заметим, что p 1 + p 2 +…+ p n = 1).

Пример. Производится стрельба по мишени (рис. 11).

Попадание в I дает три очка, в II – два очка, в III – одно очко. Число очков, выбиваемых при одном выстреле одним стрелком, имеет закон распределения вида

Для сравнения мастерства стрелков достаточно сравнить средние значения выбиваемых очков, т.е. математические ожидания M (X ) и M (Y ):

M (X ) = 1 0,4 + 2  0,2 + 3  0,4 = 2,0,

M (Y ) = 1 0,2 + 2  0,5 + 3  0,3 = 2,1.

Второй стрелок дает в среднем несколько большее число очков, т.е. при многократной стрельбе он будет давать лучший результат.

Отметим свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

M (C ) = C .

2. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

M = (X 1 + X 2 +…+ X n )= M (X 1)+ M (X 2)+…+ M (X n ).

3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий cомножителей

M (X 1 X 2 X n ) = M (X 1)M (X 2)M (X n ).

4. Математическое отрицание биноминального распределения равно произведению числа испытаний на вероятность появления события в одном испытании (задача 4.6).

M (X ) = пр .

Для оценки того, каким образом случайная величина «в среднем» уклоняется от своего математического ожидания, т.е. для того чтобы охарактеризовать разброс значений случайной величины в теории вероятностей служит понятие дисперсии.

Дисперсией случайной величины X называют математическое ожидание квадрата отклонения:

D (X ) = M [(X - M (X )) 2 ].

Дисперсия является числовой характеристикой рассеивания случайной величины. Из определения видно, что чем меньше дисперсия случайной величины, тем кучнее располагаются её возможные значения около математического ожидания, то есть тем лучше значения случайной величины характеризуются её математическим ожиданием.

Из определения следует, что дисперсия может быть вычислена по формуле

.

Дисперсию удобно вычислять по другой формуле:

D (X ) = M (X 2) - (M (X )) 2 .

Дисперсия обладает следующими свойствами:

1. Дисперсия постоянной равна нулю:

D (C ) = 0.

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D (CX ) = C 2 D (X ).

3. Дисперсия суммы независимых случайных величин равна сумме дисперсии слагаемых:

D (X 1 + X 2 + X 3 +…+ X n )= D (X 1)+ D (X 2)+…+ D (X n )

4. Дисперсия биномиального распределения равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании:

D (X ) = npq .

В теории вероятностей часто используется числовая характеристика, равная корню квадратному из дисперсии случайной величины. Эта числовая характеристика называется средним квадратным отклонением и обозначается символом

.

Она характеризует примерный размер уклонения случайной величины от её среднего значения и имеет одинаковую со случайной величиной размерность.

4.1. Стрелок проводит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна 0,3.

Построить ряд распределения числа попаданий.

Решение . Число попаданий является дискретной случайной величиной X . Каждому значению x n случайной величины X отвечает определенная вероятность P n .

Закон распределения дискретной случайной величины в данном случае можно задать рядом распределения .

В данной задаче X принимает значения 0, 1, 2, 3. По формуле Бернулли

,

найдем вероятности возможных значений случайной величины:

Р 3 (0) = (0,7) 3 = 0,343,

Р 3 (1) =0,3(0,7) 2 = 0,441,

Р 3 (2) =(0,3) 2 0,7 = 0,189,

Р 3 (3) = (0,3) 3 = 0,027.

Расположив значения случайной величины X в возрастающем порядке, получим ряд распределения:

X n

Заметим, что сумма

означает вероятность того, что случайная величина X примет хотя бы одно значение из числа возможных, а это событие достоверное, поэтому

.

4.2 .В урне имеются четыре шара с номерами от 1 до 4. Вынули два шара. Случайная величинаX – сумма номеров шаров. Построить ряд распределения случайной величиныX .

Решение. Значениями случайной величиныX являются 3, 4, 5, 6, 7. Найдем соответствующие вероятности. Значение 3 случайной величиныX может принимать в единственном случае, когда один из выбранных шаров имеет номер 1, а другой 2. Число всевозможных исходов испытания равно числу сочетаний из четырех (число возможных пар шаров) по два.

По классической формуле вероятности получим

Аналогично,

Р (Х = 4) =Р (Х = 6) =Р (Х = 7) = 1/6.

Сумма 5 может появиться в двух случаях: 1 + 4 и 2 + 3, поэтому

.

Х имеет вид:

Найти функцию распределения F (x ) случайной величиныX и построить ее график. Вычислить дляX ее математическое ожидание и дисперсию.

Решение . Закон распределения случайной величины может быть задан функцией распределения

F (x ) = P (X x ).

Функция распределения F (x ) – неубывающая, непрерывная слева функция, определенная на всей числовой оси, при этом

F (- )= 0,F (+ )= 1.

Для дискретной случайной величины эта функция выражается формулой

.

Поэтому в данном случае

График функции распределения F (x ) представляет собой ступенчатую линию (рис. 12)

F (x )

Математическое ожидание М (Х ) является взвешенной средней арифметической значенийх 1 , х 2 ,……х n случайной величиныХ при весахρ 1, ρ 2, …… , ρ n и называется средним значением случайной величиныХ . По формуле

М (Х ) = х 1 ρ 1 + х 2 ρ 2 + ……+ х n ρ n

М (Х ) = 3·0,14+5·0,2+7·0,49+11·0,17 = 6,72.

Дисперсия характеризует степень рассеяния значений случайной величины от своего среднего значения и обозначаетсяD (Х ):

D (Х )[(Х-М (Х )) 2 ] = М (Х 2) –[М (Х )] 2 .

Для дискретной случайной величины дисперсия имеет вид

или она может быть вычислена по формуле

Подставляя числовые данные задачи в формулу, получим:

М (Х 2) = 3 2 ∙ 0,14+5 2 ∙ 0,2+7 2 ∙ 0,49+11 2 ∙ 0,17 = 50,84

D (Х ) = 50,84-6,72 2 = 5,6816.

4.4. Две игральные кости одновременно бросают два раза. Написать биномиальный закон распределения дискретной случайной величиныХ - числа выпадений четного суммарного числа очков на двух игральных костях.

Решение . Введем в рассмотрение случайное событие

А = {на двух костях при одном бросании выпало в сумме четное число очков}.

Используя классическое определение вероятности найдем

Р (А )= ,

где n - число всевозможных исходов испытания находим по правилу

умножения:

n = 6∙6 =36,

m - число благоприятствующих событиюА исходов - равно

m = 3∙6=18.

Таким образом, вероятность успеха в одном испытании равна

ρ = Р (А )= 1/2.

Задача решается с применением схемы испытаний Бернулли. Одним испытанием здесь будет бросание двух игральных костей один раз. Число таких испытаний n = 2. Случайная величинаХ принимает значения 0, 1, 2 с вероятностями

Р 2 (0) =,Р 2 (1) =,Р 2 (2) =

Искомое биноминальное распределение случайной величины Х можно представить в виде ряда распределения:

х n

ρ n

4.5 . В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить распределение вероятностей дискретной случайной величиныХ – числа стандартных деталей среди отобранных и найти ее математическое ожидание.

Решение. Значениями случайной величиныХ являются числа 0,1,2,3. Ясно, чтоР (Х =0)=0, поскольку нестандартных деталей всего две.

Р (Х =1) =
=1/5,

Р (Х= 2) =
= 3/5,

Р (Х =3) =
= 1/5.

Закон распределения случайной величины Х представим в виде ряда распределения:

х n

ρ n

Математическое ожидание

М (Х )=1 ∙ 1/5+2 ∙ 3/5+3 ∙ 1/5=2.

4.6 . Доказать, что математическое ожидание дискретной случайной величиныХ - числа появлений событияА вn независимых испытаниях, в каждом из которых вероятность появления события равнаρ – равно произве-дению числа испытаний на вероятность появления события в одном испыта-нии, то есть доказать, что математическое ожидание биноминального распределения

М (Х ) =n . ρ ,

а дисперсия

D (X ) =np .

Решение. Случайная величинаХ может принимать значения 0, 1, 2…,n . ВероятностьР (Х = к) находится по формуле Бернулли:

Р (Х =к)=Р n (к)=ρ к (1) n- к

Ряд распределения случайной величины Х имеет вид:

х n

ρ n

q n

ρq n- 1

ρq n- 2

ρ n

где q = 1- ρ .

Для математического ожидания имеем выражение:

М (Х )=ρq n - 1 +2 ρ 2 q n - 2 +…+.n ρ n

В случае одного испытания, то есть при n = 1для случайной величиныХ 1 –числа появлений событияА - ряд распределения имеет вид:

х n

ρ n

M (X 1)= 0 ∙ q+ 1 ∙ p = p

D (X 1) = p p 2 = p (1- p ) = pq .

Если Х к – число появлений событияА в к-ом испытании, тоР (Х к )= ρ и

Х=Х 1 2 +….+Х n .

Отсюда получаем

М (Х )(Х 1 )(Х 2)+ (Х n )= ,

D (X )=D (X 1)+D (X 2)+ ... +D (X n )=npq.

4.7. ОТК проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание дискретной случайной величиныХ -числа партий, в каждой из которых окажется равно 4 стандартных изделия – если проверке подлежит 50 партий.

Решение . Вероятность того, что в каждой произвольно выбранной партии окажется 4 стандартных изделия, постоянна; обозначим ее черезρ .Тогда математическое ожидание случайной величиныХ равноМ (Х )= 50∙ρ.

Найдем вероятность ρ по формуле Бернулли:

ρ=Р 5 (4)== 0,94∙0,1=0,32.

М (Х )= 50∙0,32=16.

4.8 . Бросаются три игральные кости. Найти математическое ожидание суммы выпавших очков.

Решение. Можно найти распределение случайной величиныХ - суммы выпавших очков и затем ее математическое ожидание. Однако такой путь слишком громоздок. Проще использовать другой прием, представляя случайную величинуХ , математическое ожидание которой требуется вычислить, в виде суммы нескольких более простых случайных величин, математическое ожидание которых вычислить легче. Если случайная величинаХ i – это число очков, выпавших наi – й кости (i = 1, 2, 3), то сумма очковХ выразится в виде

Х = Х 1 + Х 2 + Х 3 .

Для вычисления математического ожидания исходной случайной величины останется лишь воспользоваться свойством математического ожидании

М (Х 1 + Х 2 + Х 3 ) = М (Х 1 ) + М (Х 2) + М (Х 3 ).

Очевидно, что

Р (Х i = К )= 1/6, К = 1, 2, 3, 4, 5, 6, i = 1, 2, 3.

Следовательно, математическое ожидание случайной величины Х i имеет вид

М (Х i ) = 1/6∙1 + 1/6∙2 +1/6∙3 + 1/6∙4 + 1/6∙5 + 1/6∙6 = 7/2,

М (Х ) = 3∙7/2 = 10,5.

4.9. Определить математическое ожидание числа приборов, отказавших в работе за время испытаний, если:

а) вероятность отказа для всех приборов одна и та же равна р , а число испытуемых приборов равно n ;

б) вероятность отказа для i го прибора равна p i , i = 1, 2, … , n .

Решение. Пусть случайная величина Х – число отказавших приборов, тогда

Х = Х 1 + Х 2 + … + Х n ,

X i =

Ясно, что

Р (Х i = 1)= Р i , Р (Х i = 0)= 1Р i , i= 1, 2,, n.

М (Х i )= 1∙Р i + 0∙(1–Р i ) i ,

М (Х )(Х 1)(Х 2)+ … +М (Х n ) 1 2 + … +Р n .

В случае «а» вероятность отказа приборов одна и та же, то есть

Р i =p , i= 1, 2, , n .

М (Х )= np .

Этот ответ можно было получить сразу, если заметить, что случайная величина Х имеет биномиальное распределение с параметрами (n , p ).

4.10. Две игральные кости бросают одновременно два раза. Написать биномиальный закон распределения дискретной случайной величины Х – числа выпадения четного числа очков на двух игральных костях.

Решение. Пусть

А ={выпадение четного числа на первой кости},

В = {выпадение четного числа на второй кости}.

Выпадение четного числа на обеих костях при одном бросании выразится произведением АВ. Тогда

Р (АВ ) = Р (А )∙Р (В ) =
.

Результат второго бросания двух игральных костей не зависит от первого, поэтому применима формула Бернулли при

n = 2, р = 1/4, q = 1 – р = 3/4.

Случайная величина Х может принимать значения 0, 1, 2, вероятность которых найдем по формуле Бернулли:

Р (Х= 0) = Р 2 (0) = q 2 = 9/16,

Р (Х= 1) = Р 2 (1) = С , р q = 6/16,

Р (Х= 2) = Р 2 (2) = С , р 2 = 1/16.

Ряд распределения случайной величины Х:

4.11. Устройство состоит из большого числа независимо работающих элементов с одинаковой очень малой вероятностью отказа каждого элемента за время t . Найти среднее число отказавших за время t элементов, если вероятность того, что за это время откажет хотя бы один элемент, равна 0,98.

Решение. Число отказавших за время t элементов – случайная величина Х , которая распределена по закону Пуассона, поскольку число элементов велико, элементы работают независимо и вероятность отказа каждого элемента мала. Среднее число появлений события в n испытаниях равно

М (Х ) = np .

Поскольку вероятность отказа К элементов из n выражается формулой

Р n (К )
,

где  = np , то вероятность того, что не откажет ни один элемент за время t получим при К = 0:

Р n (0) = е -  .

Поэтому вероятность противоположного события – за время t откажет хотя бы один элемент – равна 1 - е -  . По условию задачи эта вероятность равна 0,98. Из уравнения

1 - е -  = 0,98,

е -  = 1 – 0,98 = 0,02,

отсюда  = -ln 0,02 4.

Итак, за время t работы устройства откажет в среднем 4 элемента.

4.12 . Игральная кость бросается до тех пор, пока не выпадет «двойка». Найти среднее число бросаний.

Решение . Введем случайную величину Х – число испытаний, которое надо произвести, пока интересующее нас событие не наступит. Вероятность того, что Х = 1 равна вероятности того, что при одном бросании кости выпадет «двойка», т.е.

Р (Х= 1) = 1/6.

Событие Х = 2 означает, что при первом испытании «двойка» не выпала, а при втором выпала. Вероятность событияХ = 2 находим по правилу умножения вероятностей независимых событий:

Р (Х= 2) = (5/6)∙(1/6)

Аналогично,

Р (Х= 3) = (5/6) 2 ∙1/6, Р (Х= 4) = (5/6) 2 ∙1/6

и т.д. Получим ряд распределения вероятностей:

(5/6) к ∙1/6

Среднее число бросаний (испытаний) есть математическое ожидание

М (Х ) = 1∙1/6 + 2∙5/6∙1/6 + 3∙(5/6) 2 ∙1/6 + … + К (5/6) К -1 ∙1/6 + … =

1/6∙(1+2∙5/6 +3∙(5/6) 2 + … + К (5/6) К -1 + …)

Найдем сумму ряда:

К g К -1 = (g К ) g
.

Следовательно,

М (Х ) = (1/6) (1/ (1 – 5/6) 2 = 6.

Таким образом, нужно осуществить в среднем 6 бросаний игральной кости до тех пор, пока не выпадет «двойка».

4.13. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А , если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

Решение. Число появлений события в трех испытаниях является случайной величиной Х , распределенной по биномиальному закону. Дисперсия числа появлений события в независимых испытаниях (с одинаковой вероятностью появления события в каждом испытании) равна произведению числа испытаний на вероятности появления и непоявления события (задача 4.6)

D (Х ) = npq .

По условию n = 3, D (Х ) = 0,63, поэтому можно р найти из уравнения

0,63 = 3∙р (1),

которое имеет два решения р 1 = 0,7 и р 2 = 0,3.

Определение 2.3. Случайная величина, обозначаемая X, называется дискретной, если она принимает конечное либо счетное множество значений, т.е. множество – конечное либо счетное множество.

Рассмотрим примеры дискретных случайных величин.

1. Однократно бросают две монеты. Число выпадений гербов в этом эксперименте – случайная величина Х . Ее возможные значения 0,1,2, т. е. – конечное множество.

2. Регистрируется число вызовов "Скорой помощи" в течение некоторого заданного промежутка времени. Случайная величина Х – число вызовов. Ее возможные значения 0, 1, 2, 3, ...,т.е. ={0,1,2,3,...}– счетное множество.

3. В группе 25 студентов. В какой-то день регистрируется число студентов, пришедших на занятия, – случайная величина Х . Ее возможные значения: 0, 1, 2, 3, ...,25 т.е. ={0, 1, 2, 3, ..., 25}.

Хотя все 25 человек в примере 3 пропустить занятия не могут, но случайная величина Х принимать это значение может. Это означает, что значения случайной величины обладают различной вероятностью.

Рассмотрим математическую модель дискретной случайной величины.

Пусть проводится случайный эксперимент, которому соответствует конечное или счетное пространство элементарных событий . Рассмотрим отображение этого пространства на множество действительных чисел, т. е. каждому элементарному событию поставим в соответствие некоторое действительное число , . Множество чисел при этом может быть конечным или счетным, т. е. или

Система подмножеств, в которую входит любое подмножество , в том числе одноточечное, образует -алгебру числового множества ( – конечно или счетно).

Поскольку любому элементарному событию поставлены в соответствие определенные вероятности р i (в случае конечного все ), причем , то и каждому значению случайной величины можем поставить в соответствие определенную вероятность р i , такую, что .

Пусть х – произвольное действительное число. Обозначим Р Х (х) вероятность того, что случайная величина Х приняла значение, равное х , т.е. Р Х (х)=Р(Х=х) . Тогда функция Р Х (х) может принимать положительные значения лишь при тех значениях х , которые принадлежат конечному либо счетному множеству , а при всех остальных значениях вероятность этого значения Р Х (х)=0.

Итак, мы определили множество значений , -алгебру как систему любых подмножеств и каждому событию {X = х } сопоставили вероятность дпя любых , т.е. построили вероятностное пространство .

Например, пространство элементарных событий эксперимента, состоящего в двукратном подбрасывании симметричной монеты, состоит из четырех элементарных событий: , где



При двукратном подбрасывании монеты выпали две решетки ; при двукратном подбрасывании монеты выпали два герба ;

При первом подбрасывании монеты выпала решетка, а при втором – герб ;

При первом подбрасывании монеты выпал герб, а при втором – решетка .

Пусть случайная величина Х – число выпадений решетки. Она определена на и множество ее значений . Все возможные подмножества , в том числе и одноточечные, образуют - алгебру, т.е. ={Ø, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}}.

Вероятность события {Х=х i }, і = 1,2,3 , определим как вероятность появления события, являющегося его прообразом:

Таким образом, на элементарных событиях {X = х i } задали числовую функцию Р Х , так, что .

Определение 2.4. Законом распределения дискретной случайной величины называется совокупность пар чисел (х i , р i), где х i – возможные значения случайной величины, а р i – вероятности, с которыми она принимает эти значения, причем .

Простейшей формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующиеим вероятности:

Такая таблица называется рядом распределения. Чтобы придать ряду распределения более наглядный вид, его изображают графически: на оси Ох наносят точки х i и проводят из них перпендикуляры длиной р i . Полученные точки соединяют и получают многоугольник, который является однойиз форм закона распределения (рис. 2.1).

Таким образом, для задания дискретной случайной величины нужно задать ее значения и соответствующиеим вероятности.

Пример 2.2. Денежный приемник автомата срабатывает при каждом опускании монеты с вероятностью р . Как только он сработал, монеты не опускают. Пусть Х – число монет, которые надо опустить до срабатывания денежного приемника автомата. Построить ряд распределения дискретной случайной величины Х .



Решение. Возможные значения случайной величины Х : х 1 = 1, х 2 = 2,..., х к =к, … Найдем вероятности этих значений: р 1 – вероятность того, что денежный приемник сработает при первом опускании, и р 1 =р; р 2 – вероятность того, что будут произведены две попытки. Для этого нужно, чтобы: 1) при первой попытке денежный приемник не сработал; 2) при второй попытке – сработал. Вероятность этого события равна (1–р)р . Аналогично и так далее, . Ряд распределения Х примет вид

1 2 3 к
р qp q 2 p q r -1 p

Заметим, что вероятности р к образуют геометрическую прогрессию со знаменателем: 1–p=q , q<1, поэтому такое распределение вероятностей называется геометрическим .

ІІредположим далее, что построена математическая модель эксперимента, описываемого дискретной случайной величиной Х , и рассмотрим вычисление вероятностей наступления произвольных событий .

Пусть произвольное событие содержит конечное либо счетное множество значений х i : A= {х 1 , х 2 ,..., х i , ... } .Событие А можно представить в виде объединения несовместных событий вида : . Тогда, применяя аксиому Колмогорова 3, получаем

так как вероятности наступления событий мы определили равными вероятностям появления событий, являющихся их прообразами. Это значит, что и вероятность любого события , , можно вычислить по формуле , так как это событие представимо в виде, объединения событий , где .

Тогда и функция распределения F(х) = Р(– <Х<х) находится по формуле . Отсюда следует, что функция распределения дискретной случайной величины Х разрывна и возрастает скачками, т. е. является ступенчатой функцией (рис. 2.2):

Если множество конечно, то число слагаемых в формуле конечно, если же счётно, то и число слагаемых счетно.

Пример 2.3. Техническое устройство состоит из двух элементов, работающих независимо друг от друга. Вероятность выходаиз строя первого элемента за время Т равна 0,2, а вероятность выхода второго элемента – 0,1. Случайная величина Х – число отказавших элементов за время Т. Найти функцию распределения случайнойвеличины и построить ее график.

Решение. Пространство элементарных событий эксперимента, состоящего в исследовании надежности двух элементов технического устройства, определяется четырьмя элементарными событиями , , , : – оба элемента исправны; – первый элемент исправен, второй неисправен; – первый элемент неисправен, второй исправен; – оба элемента неисправны. Каждоеиз элементарных событий можно выразить через элементарные события пространств и , где – первый элемент исправен; – первый элемент вышел из строя; – второй элемент исправен; – второй элемент вышел из строя. Тогда , и таккак элементы технического устройства работают независимо друг от друга, то

8. Чему равна вероятность того, что значения дискретной случайной величины принадлежат промежутку ?

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно:

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и в свою очередь, случайная величина называется дискретной , если множество её значений конечно или счётно.

Кроме дискретных случайных величин существуют также непрерывные случайные величины.

Рассмотрим более подробно понятие случайной величины. На практике часто встречаются величины, которые могут принимать некоторые значения, но нельзя достоверно предсказать, какое именно значение каждая из них примет в рассматриваемом опыте, явлении, наблюдении. Например, число мальчиков, которые родятся в Москве в ближайший день, может быть различным. Оно может быть равным нулю (не родится ни одного мальчика: родятся все девочки или вообще не будет новорождённых), одному, двум и так далее до некоторого конечного числа n . К подобным величинам относятся: масса корнеплода сахарной свеклы на участке, дальность полёта артиллерийского снаряда, количество бракованных деталей в партии и так далее. Такие величины будем называть случайными. Они характеризуют все возможные результаты опыта или наблюдения с количественной стороны.

Примерами дискретных случайных величин с конечным числом значений могут служить число родившихся детей в течение дня в населённом пункте, число пассажиров автобуса, число пассажиров, перевезённых московским метро за сутки и т. п.

Число значений дискретной случайной величины может быть и бесконечным, но счётным множеством. Но в любом случае их можно в каком-то порядке пронумеровать, или, более точно - установить взаимно-однозначное соответствие между значениями случайной величины и натуральными числами 1, 2, 3, ..., n .

Внимание: новое, очень важное понятие теории вероятностей - закон распределения . Пусть X может принимать n значений: . Будем считать, что они все различны (в противном случае одинаковые должны быть объединены) и расположены в возрастающем порядке. Для полной характеристики дискретной случайной величины должны быть заданы не только все её значения, но и верояности , с которыми случайная величина принимает каждое из значений, т. е. .

Законом распределения дискретной случайной величины называется любое правило (функция, таблица) p (x ), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она пример какое-то значение или попадёт в какой-то интервал).

Наиболее просто и удобно закон распределения дискретной случайной величины задавать в виде следующей таблицы:

Значение ...
Вероятность ...

Такая таблица называется рядом распределения дискретной случайной величины . В верхней строке ряда распределения перечислены в порядке возрастания все возможные значения дискретной случайной величины (иксы), а в нижней - вероятности этих значений (p ).

События являются несовместимыми и единственно возможными: они образуют полную систему событий. Поэтому сумма их вероятностей равна единице:

.

Пример 1. В студенческой группе организована лотерея. Разыгрывается две вещи стоимостью по 1000 руб. и одна стоимостью по 3000 руб. Составить закон распределения суммы чистого выигрыша для студента, который приобрёл один билет за 100 руб. Всего продано 50 билетов.

Решение. Интересующая нас случайная величина X может принимать три значения: - 100 руб. (если студент не выиграет, а фактически проиграет 100 руб., уплаченные им за билет), 900 руб. и 2900 руб. (фактический выигрыш уменьшается на 100 руб. - на стоимость билета). Первому результату благоприятствуют 47 случаев из 50, второму - 2, а третьему - один. Поэтому их вероятности таковы: P (X =-100)=47/50=0,94 , P (X =900)=2/50=0,04 , P (X =2900)=1/50=0,02 .

Закон распределения дискретной случайной величины X имеет вид

Сумма выигрыша -100 900 2900
Вероятность 0,94 0,04 0,02

Функция распределения дискретной случайной величины: построение

Ряд распределения может быть построен только для дискретной случайной величины (для недискретной он не может быть построен хотя бы потому, что множество возможных значений такой случайной величины несчётно, их нельзя перечислить в верхней строке таблицы).

Наиболее общей формой закона распределения, пригодной для всех случайных величин (как дискретных, так и недискретных), является функция распределения.

Функцией распределения дискретной случайной величины или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.

Пример 2. Дискретная случайная величина X - число очков, выпавших при бросании игральной кости. Постоить её функцию распределения.

Решение. Ряд распределения дискретной случайной величины X имеет вид:

Значение 1 2 3 4 5 6
Вероятность 1/6 1/6 1/6 1/6 1/6 1/6

Функция распределения F (x ) имеет 6 скачков, равных по величине 1/6 (на рисунке внизу).

Пример 3. В урне 6 белых шаров и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров - дискретная случайная величина X . Составить соответствующий ей закон распределения.

X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности проще всего вычислисть по правилу умножения вероятностей . Получаем следующий закон распределения дискретной случайной величины:

Значение 0 1 2 3
Вероятность 1/30 3/10 1/2 1/6

Пример 4. Составить закон распределения дискретной случайной величины - числа попаданий в цель при четырёх выстрелах, если вероятность попадания при одном выстреле равна 0,1.

Решение. Дискретная случайная величина X может принимать пять различных значений: 1, 2, 3, 4, 5. Соответствующие им вероятности найдём по формуле Бернулли . При

n = 4 ,

p = 1,1 ,

q = 1 - p = 0,9 ,

m = 0, 1, 2, 3, 4

получаем

Следовательно, закон распределения дискретной случайной величины X имеет вид

Если вероятности значений дискретной случайной величины можно определить по формуле Бернулли, то случайная величина имеет биномиальное распределение .

Если число испытаний достаточно велико, то вероятность того, что в этих испытаниях интересующее событие наступит именно m раз, подчиняется закону распределения Пуассона .

Функция распределения дискретной случайной величины: вычисление

Чтобы вычислить функцию распределения дискретной случайной величины F (х ), требуется сложить вероятности всех тех значений, которые меньше или равны граничному значению х .

Пример 5. В таблице данные о зависимости числа расторгнутых в течение года браков от длительности брака. Найти вероятность того, что очередной расторгнутый брак имел длительность менее или равную 5 годам.

Длительность брака (лет) Число Вероятность F (x )
0 10 0,002 0,002
1 80 0,013 0,015
2 177 0,029 0,044
3 209 0,035 0,079
4 307 0,051 0,130
5 335 0,056 0,186
6 358 0,060 0,246
7 413 0,069 0,314
8 432 0,072 0,386
9 402 0,067 0,453
10 и более 3287 0,547 1,000
Всего 6010 1

Решение. Вероятности вычислены путём деления числа соответствующих расторгнутых браков на общее число 6010. Вероятность того, что очередной расторгнутый брак был длительностью в 5 лет, равна 0,056. Вероятность, что длительность очередного расторгнутого брака меньше или равна 5 годам, равна 0,186. Мы получили её, прибавив к значению F (x ) для браков с длительностью по 4 года включительно вероятность для браков с длительностью в 5 лет.

Связь закона распределения дискретной случайной величины с математическим ожиданием и дисперсией

Часто не все значения дискретной случайной величины известны, но известны некоторые значения или вероятности из ряда, а также математическое ожидание и (или) дисперсия случайной величины , которым посвящён отдельный урок.

Приведём здесь некоторые формулы из этого урока, которые могут выручить при составлении закона распределения дискретной случайной величины и разберём примеры решения таких задач.

Математическое ожидание дискретной случайной величины - сумма произведений всех возможных её значений на вероятности этих значений:

(1)

Формула дсперсии дискретной случайной величины по определению:

Часто для вычислений более удобна следующая формула дисперсии:

, (2)

где .

Пример 6. Дискретная случайная величина X может принимать только два значения. Меньшее значение она принимает с вероятностью p = 0,6 . Найти закон распределения дискретной случайной величины X , если известно, что её математическое ожидание и дисперсия .

Решение. Вероятность того, что случайная величина примет бОльшее значение x 2 , равна 1 − 0,6 = 4 . Используя формулу (1) математического ожидания, составим уравнение, в котором неизвестные - значения нашей дискретной случайной величины:

Используя формулу (2) дисперсии, составим другое уравнение, в котором неизвестные - также значения дискретной случайной величины:

Систему из двух полученных уравнений

решаем методом подстановки. Из первого уравнения получаем

Подставив это выражение во второе уравнение, после несложных преобразований получим квадратное уравнение

,

которое имеет два корня: 7/5 и −1 . Первый корень не отвечает условиям задачи, так как x 2 < x 1 . Таким образом, значения, которые может принимать дискретная случайная величина X по условиям нашего примера, равны x 1 = −1 и x 2 = 2 .

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»