Оценка параметров уравнения тренда. Анализ временных рядов

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

В главе 2 было рассмотрено понятие о тенденции временного ряда, т.е. тенденции динамики развития изучаемого показате­ля. Задача данной главы состоит в том, чтобы рассмотреть ос­новные типы таких тенденций, их свойства, отражаемые с большей или меньшей степенью полноты уравнением линии тренда. Укажем при этом, что в отличие от простых систем ме­ханики тенденции изменения показателей сложных социальных, экономических, биологических и технических систем только с некоторым приближением отражаются тем или иным уравне­нием, линией тренда.

В данной главе рассматриваются далеко не все известные в математике линии и их уравнения, а лишь набор их сравнитель­но простых форм, который мы считаем достаточным для ото­бражения и анализа большинства встречающихся на практике тенденций временных рядов. При этом желательно всегда вы­бирать из нескольких типов линий, достаточно близко выра­жающих тенденцию, более простую линию. Этот «принцип простоты» обоснован тем, что чем сложнее уравнение линии тренда, чем большее число параметров оно содержит, тем при равной степени приближения труднее дать надежную оценку этих параметров по ограниченному числу уровней ряда и тем больше ошибка оценки этих параметров, ошибки прогнозиру­емых уровней.

4.1. Прямолинейный тренд и его свойства

Самым простым типом линии тренда является прямая ли­ния, описываемая линейным (т.е. первой степени) уравнением тренда:

где - выровненные, т.е. лишенные колебаний, уровни тренда для лет с номеромi;

а - свободный член уравнения, численно равный среднему выровненному уровню для момента или периода времени, принятого за начало отсчета, т.е. для

t = 0;

b - средняя величина изменения уровней ряда за единицу из­менения времени;

ti - номера моментов или периодов времени, к которым от­носятся уровни временного ряда (год, квартал, месяц, дата).

Среднее изменение уровней ряда за единицу времени - глав­ный параметр и константа прямолинейного тренда. Следова­тельно, этот тип тренда подходит для отображения тенденции примерно равномерных изменений уровней: равных в среднем абсолютных приростов или абсолютных сокращений уровней за равные промежутки времени. Практика показывает, что та­кой характер динамики встречается достаточно часто. Причи­на близких к равномерному абсолютных изменений уровней ряда состоит в следующем: многие явления, как, например, урожай­ность сельскохозяйственных культур, численность населения региона, города, сумма дохода населения, среднее потребление какого-либо продовольственного товара и др., зависят от боль­шого числа различных факторов. Одни из них влияют в сторо­ну ускоренного роста изучаемого явления, другие - в сторону замедленного роста, третьи - в направлении сокращения уров­ней и т.д. Влияние разнонаправленных и разноускоренных (за­медленных) сил факторов взаимно усредняется, частично взаимно погашается, а равнодействующая их влияний приобре­тает характер, близкий к равномерной тенденции. Итак, равно­мерная тенденция динамики (или застоя) - это результат сложения влияния большого количества факторов на изменение изучаемого показателя.

Графическое изображение прямолинейного тренда - прямая линия в системе прямоугольных координат с линейным (ариф­метическим) масштабом на обеих осях. Пример линейного тренда дан на рис. 4.1.

Абсолютные изменения уровней в разные годы не были точно одинаковыми, но общая тенденция сокращения численности занятых в народном хозяйстве очень хорошо отражает­ся прямолинейным трендом. Его параметры вычислены в гл. 5 (табл. 5.3).

Основные свойства тренда в форме прямой линии таковы:

Равные изменения за равные промежутки времени;

Если средний абсолютный прирост - положительная вели­чина, то относительные приросты или темпы прироста посте­пенно уменьшаются;

Если среднее абсолютное изменение - отрицательная вели­чина, то относительные изменения или темпы сокращения по­степенно увеличиваются по абсолютной величине снижения к предыдущему уровню;

Если тенденция к сокращению уровней, а изучаемая вели­чина является по определению положительной, то среднее изме­нение b не может быть больше среднего уровняа;

При линейном тренде ускорение, т.е. разность абсолютных изменений за последовательные периоды, равно нулю.

Свойства линейного тренда иллюстрирует табл. 4.1. Урав­нение тренда: = 100 +20 *ti.

Показатели динамики при наличии тенденции сокращения уровней приведены в табл. 4.2.

Таблица 4.1

Показатели динамики при линейном тренде к увеличению уровней = 100 +20 *ti.

Номер периода ti

Темпы (цеп­ные), %

Ускоре­ние

Таблица 4.2

Показатели динамики при линейном тренде сокращения уровней: = 200 -20 *ti.

Номер периода ti

Абсолютное изме­нение к предыду­щему периоду

Темп к предыдущему периоду, %

Ускоре­ние

ПРИМЕР . Статистическое изучение динамики численности населения.

    С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.

    С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.

    Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.

Метод аналитического выравнивания а) Линейное уравнение тренда имеет вид y = bt + a 1. Находим параметры уравнения методом наименьших квадратов . Используем способ отсчета времени от условного начала. Система уравнений МНК для линейного тренда имеет вид: a 0 n + a 1 ∑t = ∑y a 0 ∑t + a 1 ∑t 2 = ∑y t

Для наших данных система уравнений примет вид: 10a 0 + 0a 1 = 10400 0a 0 + 330a 1 = -4038 Из первого уравнения выражаем а 0 и подставим во второе уравнение Получаем a 0 = -12.236, a 1 = 1040 Уравнение тренда: y = -12.236 t + 1040

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации. Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

б) выравнивание по параболе Уравнение тренда имеет вид y = at 2 + bt + c 1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК: a 0 n + a 1 ∑t + a 2 ∑t 2 = ∑y a 0 ∑t + a 1 ∑t 2 + a 2 ∑t 3 = ∑yt a 0 ∑t 2 + a 1 ∑t 3 + a 2 ∑t 4 = ∑yt 2

Для наших данных система уравнений имеет вид 10a 0 + 0a 1 + 330a 2 = 10400 0a 0 + 330a 1 + 0a 2 = -4038 330a 0 + 0a 1 + 19338a 2 = 353824 Получаем a 0 = 1.258, a 1 = -12.236, a 2 = 998.5 Уравнение тренда: y = 1.258t 2 -12.236t+998.5

Ошибка аппроксимации для параболического уравнения тренда. Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R 2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

Интервальный прогноз. Определим среднеквадратическую ошибку прогнозируемого показателя. m = 1 - количество влияющих факторов в уравнении тренда. Uy = y n+L ± K где L - период упреждения; у n+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; T табл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2 . По таблице Стьюдента находим Tтабл T табл (n-m-1;α/2) = (8;0.025) = 2.306 Точечный прогноз, t = 10: y(10) = 1.26*10 2 -12.24*10 + 998.5 = 1001.89 тыс. чел. 1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02 Интервальный прогноз: t = 9+1 = 10: (930.76;1073.02)

Тренд - это закономерность описывающая подъем или падение показателя в динамике. Если изобразить любой динамический ряд (статистические данные, представляющие собой список зафиксированных значений изменяемого показателя во времени) на графике, часто выделяется определенный угол – кривая либо постепенно идет на увеличение или на уменьшение, в таких случаях принято говорить, что ряд динамики имеет тенденцию (к росту или падению соответственно).

Тренд как модель

Если же построить модель, описывающую это явление, то получается довольно простой и очень удобный инструмент для прогнозирования не требующий каких-либо сложных вычислений или временных затрат на проверку значимости или адекватности влияющих факторов.

Итак, что же собой представляет тренд как модель? Это совокупность расчетных коэффициентов уравнения, которые выражают регрессионную зависимость показателя (Y) от изменения времени (t). То есть, это точно такая же регрессия, как и те, что мы рассматривали ранее, только влияющим фактором здесь выступает именно показатель времени.

Важно!

В расчетах под t обычно подразумевается не год, номер месяца или недели, а именно порядковый номер периода в изучаемой статистической совокупности – динамическом ряде. К примеру, если динамический ряд изучается за несколько лет, а данные фиксировались ежемесячно, то использовать обнуляющуюся нумерацию месяцев, с 1 по 12 и опять сначала, в корне неверно. Также неверно в случае, если изучение ряда начинается, к примеру, с марта месяца в качестве значения t использовать 3 (третий месяц в году), если это первое значение в изучаемой совокупности, то его порядковый номер должен быть 1.

Модель линейного тренда

Как и любая другая регрессия, тренд может быть как линейным (степень влияющего фактора t равна 1) так и нелинейным (степень больше или меньше единицы). Так как линейная регрессия является самой простейшей, хотя далеко не всегда самой точной, то рассмотрим более детально именно этот тип тренда.

Общий вид уравнения линейного тренда:

Y(t) = a 0 + a 1 *t + Ɛ

Где a 0 – это нулевой коэффициент регрессии, то есть, то каким будет Y в случае, если влияющий фактор будет равен нулю, a 1 – коэффициент регрессии, который выражает степень зависимости исследуемого показателя Y от влияющего фактора t, Ɛ – случайная компонента или стандартная ошибка, по сути являет собой разницу между реально существующими значениями Y и расчетными. t – это единственный влияющий фактор – время.

Чем более выраженная тенденция роста показателя или его падения, тем будет больше коэффициент a 1 . Соответственно, предполагается, что константа a 0 совместно со случайной компонентой Ɛ отражают остальные регрессионные влияния, помимо времени, то есть всех прочих возможных влияющих факторов.

Рассчитать коэффициенты модели можно стандартным Методом наименьших квадратов (МНК). Со всеми этими расчетами Microsoft Excel справляется на ура самостоятельно, при чем, чтобы получить модель линейного тренда либо готовый прогноз существует целых пять способов, которые мы по отдельности разберем ниже.

Графический способ получения линейного тренда

В этом и во всех дальнейших примерах будем использовать один и тот же динамический ряд – уровень ВВП, который вычисляется и фиксируется ежегодно, в нашем случае исследование будет проходить на периоде с 2004-го по 2012-й гг.

Добавим к исходным данным еще один столбец, который назовем t и пометим цифрами по возрастающей порядковые номера всех зафиксированных значений ВВП за указанный период с 2004-го по 2012-й гг. – 9 лет или 9 периодов .

Эксель добавит пустое поле – разметку под будущий график, выделяем этот график и активируем появившуюся вкладку в панели меню – Конструктор , ищем кнопку Выбрать данные , в отрывшемся окне жмем кнопочку Добавить . Всплывшее окошко предложит выбрать данные для построения диаграммы. В качестве значения поля Имя ряда выбираем ячейку, которая содержит текст, наиболее полно отвечающий названию графика. В поле Значения X указываем интервал ячеек стобца t – влияющего фактора. В поле Значения Y указываем интервал ячеек столбца с известными значениями ВВП (Y) – исследуемого показателя.

Заполнив указанные поля, несколько раз нажимаем кнопку ОК и получаем готовый график динамики. Теперь выделяем правой кнопкой мыши саму линию графика и из появившегося контекстного меню выбираем пункт Добавить линию тренда

Откроется окошко для настройки параметров построения линии тренда, где среди типов моделей выбираем Линейная , ставим галочки напротив пунктов Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации R2 , этого будет достаточно чтобы на графике отобразилась уже построенная линия тренда, а также математический вариант отображения модели в виде готового уравнения и показатель качества модели R 2 . Если вас интересует отображение на графике прогноза, чтобы визуально оценить отрыв исследуемого показателя укажите в поле Прогноз вперед на количество интересующих периодов.

Собственно это все, что касается этого способа, можно конечно добавить, что отображаемое уравнение линейного тренда это и есть непосредственно сама модель, которую можно использовать, в качестве формулы, чтобы получить расчетные значения по модели и соответственно точные значения прогноза (прогноз отображаемый на графике, оценить можно лишь приблизительно), что мы и сделали в приложенному к статье примере.

Построение линейного тренда с помощью формулы ЛИНЕЙН

Суть этого метода сводится к поиску коэффициентов линейного тренда с помощью функции ЛИНЕЙН , затем, подставляя эти влияющие коэффициенты в уравнение, получим прогнозную модель.

Нам потребуется выделить две рядом стоящие ячейки (на скриншоте это ячейки A38 и B38), далее в строке формул вверху (выделено красным на скриншоте выше) вызываем функцию, написав «=ЛИНЕЙН(», после чего эксель выведет подсказки того, что требуется для этой функции, а именно:

  1. выделяем диапазон с известными значениями описываемого показателя Y (в нашем случае ВВП, на скриншоте диапазон выделен синим) и ставим точку с запятой
  2. указываем диапазон влияющих факторов X (в нашем случае это показатель t, порядковый номер периодов, на скриншоте выделено зеленым) и ставим точку с запятой
  3. следующий по порядку требуемый параметр для функции – это определение того нужно ли рассчитывать константу, так как мы изначально рассматриваем модель с константой (коэффициент a 0 ), то ставим либо «ИСТИНА» либо «1» и точку с запятой
  4. далее нужно указать требуется ли расчет параметров статистики (в случае, если бы мы рассматривали этот вариант, то изначально пришлось бы выделить диапазон «под формулу» на несколько строк ниже). Указывать необходимость расчета параметров статистики, а именно стандартного значение ошибки для коэффициентов, коэффициента детерминированности, стандартной ошибки для Y, критерия Фишера, степеней свободы и пр. , есть смысл только тогда, когда вы понимаете, что они означают, в этом случае ставим либо «ИСТИНА», либо «1». В случае упрощенного моделирования, которому мы пытаемся научиться, на этом этапе прописывания формулы, ставим «ЛОЖЬ» либо «0» и добавляем после закрывающую скобочку «)»
  5. чтобы «оживить» формулу, то есть заставить ее работать после прописывания всех необходимых параметров, не достаточно нажать кнопку Enter, необходимо последовательно зажать три клавиши: Ctrl, Shift, Enter

Как видим на скриншоте выше, выделенные нами под формулу ячейки заполнились расчетными значениями коэффициентов регрессии для линейного тренда, в ячейке B38 находится коэффициент a 0 , а в ячейке A38 - коэффициент зависимости от параметра t (или x ), то есть a 1 . Подставляем полученные значения в уравнение линейной функции и получаем готовую модель в математическом выражении – y = 169 572,2+138 454,3*t

Чтобы получить расчетные значения Y по модели и, соответственно, чтобы получить прогноз, нужно просто подставить формулу в ячейку экселя, а вместо t указать ссылку на ячейку с требуемым номером периода (смотрите на скриншоте ячейку D25 ).

Для сравнения полученной модели с реальными данными, можно построить два графика, где в качестве Х указать порядковый номер периода, а в качестве Y в одном случае – реальный ВВП, а, в другом – расчетный (на скриншоте диаграмма справа).

Построение линейного тренда с помощью инструмента Регрессия в Пакете анализа

В статье , по сути, полностью описан этот метод, единственная же разница в том, что в наших исходных данных только один влияющий фактор Х (номер периода – t ).

Как видно на рисунке выше, диапазон данных с известными значениями ВВП выделен как входной интервал Y , а соответствующий ему диапазон с номерами периодов t – как входной интервал Х . Итоги расчетов Пакетом анализа выносятся на отдельный лист и выглядит как набор таблиц (см. рисунок ниже) на котором нас интересуют ячейки, которые были закрашены мною в желтый и зеленый цвета. По аналогии с порядком, расписанным в указанной выше статье, из полученных коэффициентов собирается модель линейного тренда y=169 572,2+138 454,3*t , на основе которой и делаются прогнозы.

Прогнозирование с помощью линейного тренда через функцию ТЕНДЕНЦИЯ

Этот метод отличается от предыдущих тем, что он пропускает необходимые ранее этапы расчета параметров модели и подстановки полученных коэффициентов вручную в качестве формулы в ячейку, чтобы получить прогноз, эта функция как раз и выдает уже готовое рассчитанное прогнозное значение на основе известных исходных данных.

В целевую ячейку (ту ячейку, где хотим видеть результат) ставим знак равно и вызываем волшебную функцию, прописав «ТЕНДЕНЦИЯ(», далее необходимо выделить , то есть , после ставим точку с запятой и выделяем диапазон с известными значениями Х, то есть с номерами периодов t , которые соответствуют столбцу с известными значениями ВВП, опять ставим точку с запятой и выделяем ячейку с номером периода, для которого мы делаем прогноз (правда, в нашем случае, номер периода можно указать не ссылкой на ячейку, а просто цифрой прямо в формуле), далее ставим еще одну точку с запятой и указываем ИСТИНА или 1 , в качестве подтверждения для расчета коэффициента a 0 , наконец, ставим закрывающую скобочку и нажимаем клавишу Enter .

Минус данного метода в том, что он не показывает ни уравнения модели, ни его коэффициентов, из-за чего нельзя сказать, что на основе такой-то модели мы получили такой-то прогноз, также как и нет какого-либо отражения параметров качества модели, того таки коэффициента детерминации, по которому можно было бы сказать имеет ли смысл брать во внимание полученный прогноз или нет.

Прогнозирование с помощью линейного тренда через функцию ПРЕДСКАЗ

Суть данной функции целиком и полностью идентична предыдущей, разница лишь в порядке прописывания исходных данных в формуле и в том, что нет настройки для наличия или отсутствия коэффициента a 0 (то есть функция подразумевает, что этот коэффициент, в любом случае, есть)

Как видно с рисунка выше, в целевую ячейку прописываем «=ПРЕДСКАЗ(» и затем указываем ячейку с номером периода , для которого необходимо просчитать значение по линейному тренду, то есть прогноз, после ставим точку с запятой, далее выделяем диапазон известных значений Y , то есть столбец с известными значениями ВВП , после ставим точку с запятой и выделяем диапазон с известными значениями Х , то есть с номерами периодов t , которые соответствуют столбцу с известными значениями ВВП и, наконец, ставим закрывающую скобочку и жмем клавишу Enter .

Полученные результаты, как и в методе выше, это лишь готовый результат расчета прогнозного значения по линейной трендовой модели, он не выдает ни погрешностей, ни самой модели в математическом выражении.

Подводя итог к статье

Можно сказать, что каждый из методов может быть наиболее приемлемым среди прочих в зависимости от текущей цели, которую мы ставим перед собой. Первые три метода пересекаются между собой как по смыслу, так и по результату, и годятся для любой более или менее серьезной работы, где необходимо описание модели и ее качества. В свою очередь, последние два метода также идентичны между собой и максимально быстро вам дадут ответ, например, на вопрос: «Какой прогноз продаж на следующий год?».

Ряда. Уравнение тренда.

Кривые роста, описывающие закономерности развития явлений во времени, - это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций (т. е. их подгонка к данным) в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

Определения численных значений (оценивание) параметров кривой;

Апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выравненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. те уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

В табл. 4 приводится перечень наиболее употребительных при анализе экономических рядов видов кривых и указываются соответствующие «симптомы», по которым можно определить, какой вид кривых подходит для выравнивания.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут в общем существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

Таблица 4

Характер изменения показателей, основанных
на средних приростах для различных видов кривых

Показатель Характер изменения показателей во времени Вид кривой
Примерно одинаковые Прямая
Линейно изменяются Парабола второй степени
Линейно изменяются Парабола третьей степени
Примерно одинаковые Экспонента
Линейно изменяются Логарифмическая парабола
Линейно изменяются Модифицированная экспонента
Линейно изменяются Кривая Гомперца

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1.Линейная форма тренда:

где - уровень ряда, полученный в результате выравнивания по прямой;

Начальный уровень тренда;

Средний абсолютный прирост; константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2.Параболическая (полином 2-ой степени) форма тренда:

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t.

3.Экспоненциальная форма тренда:

где - константа тренда; средний темп изменения уровня ряда.

При > 1 данный тренд может отражать тенденцию ускоренного и все более ускоряющегося возрастания уровней ряда. При < 1 – тенденцию постоянно, все более замедляющегося снижения уровней временного ряда.

4.Гиперболическая форма тренда (1 типа):

Данная форма тренда может отображать тенденцию процессов, ограниченных предельным значением уровня.

5.Логарифмическая форма тренда:

где - константа тренда.

Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

6.Обратнологарифмическая форма тренда:

7.Мультипликативная (степенная) форма тренда:

8.Обратная (гиперболическая 2 типа) форма тренда:

9.Гиперболическая форма тренда 3 типа:

10.Полином 3-ей степени:

Для всех нелинейных, относительно исходных переменных моделей (уравнений регрессии), а их здесь большинство, требуется провести вспомогательные преобразования, представленные в таблице ниже.

Таблица 5

Модели, сводящиеся к линейному тренду

Модель Уравнение Преобразование
Мультипликативная (Степенная)
Гиперболическая I типа
Гиперболическая II типа
Гиперболическая III типа
Логарифмическая
Обратнологариф­мическая

В формулах, перечисленных в таблице, как и во всех формулах, описывающих модель тренда, есть коэффициенты уравнений.

Однако, при практическом использовании линеаризации с помощью преобразования исследуемых переменных следует иметь ввиду, что оценки параметров, полученных линеаризацией с помощью М.Н.К. (метод наименьших квадратов), минимизируют сумму квадратов отклонений для преобразованных, а не исходных переменных. Поэтому полученные с помощью линеаризации зависимостей оценки нуждаются в уточнении.

Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать несколько новых дополнительных переменных, необходимых для выполнения дальнейшей работы, а также осуществить некоторые вспомогательные операции по преобразованию нелинейных моделей тренда в линейные.

Итак, нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Прежде всего, мы создадим переменную «Т», содержащую моменты времени четвертого периода. Так как четвертый период включает 12 лет, то переменная «Т» будет состоять из натуральных чисел от 1 до 12, соответствующих месяцам года.

Кроме того, для работы с некоторыми моделями тренда нам потребуется еще несколько переменных, содержание которых можно понять из их обозначения. Это переменные, получаемые из временного ряда: «Т^2», «Т^3», «1/Т» и «ln T». А также переменные, получаемые из исходных данных за четвертый период: «1/Import4» и «ln Import4». Также необходимо создать такую же таблицу для экспорта. Все это предлагается сделать на новом рабочем листе, скопировав туда данные за 4-й период.

Для этого воспользуемся уже известным нам меню Workbook/Insert.

В итоге получаем следующие электронные таблицы.

Рис. 38. Таблица со вспомогательными переменными для импорта

Рис. 39. Таблица со вспомогательными переменными для экспорта

Для аналитического выравнивания рядов динамики мы будем использовать модуль Multiple Regression в меню Statistics. Рассмотрим пример построения графического изображения и определение численных параметров тренда, выраженного линейной зависимостью.

Рис. 40. Модуль Multiple Regression в меню Statistics

Для выбора зависимых и независимых переменных воспользуемся кнопкой Variables.

В открывшемся окне в левом информационном поле мы выбираем зависимую переменную Y t , (в нашем случае это Import 4 – данные по четвертому периоду). Номера выбранных зависимых переменных отображаются внизу в поле Dependent var. (or list for batch). Соответственно в правом поле мы выбираем независимые переменные (в нашем случае одну – время «Т»). Номера выбранных независимых переменных высвечиваются внизу в поле Independent variable list.

После того, как завершен выбор переменных, нажимаем ОК. Система выдает окно с обобщенными результатами расчета параметров тренда (далее они будут рассмотрены более подробно) и возможностью выбора направления для последующего детального анализа. Заметим, что значение оценки, высвеченное красным цветом, указывает на статистическую значимость результатов.

Рис. 41. Закладка Advanced

На закладке располагается несколько кнопок, позволяющих получить максимально детализированные сведения по интересующему нас направлению анализа. При нажатии на нее получаем две таблицы с результатами регрессионного анализа. В первой представлены результаты расчета параметров уравнения регрессии, во второй – основные показатели уравнения.

Рис. 42. Основные показатели уравнения для данных импорта за четвертый период (линейный тренд)

Здесь N = – объем результативной переменной. В верхнем поле расположены показатели R, , Adjusted R, F, p, Std.Error of Estimate , означающие соответственно теоретическое корреляционное отношение, коэффициент детерминации, уточненный коэффициент детерминации, расчетное значение критерия Фишера (в скобках дано число степеней свободы), уровень значимости, стандартная ошибка уравнения (эти же показатели можно увидеть во второй таблице). В самой таблице нас интересуют столбец В , в котором расположены коэффициенты уравнения, столбец t и столбец p-level , обозначающие расчетное значение t-критерия и расчетный уровень значимости, необходимые для оценки значимости параметров уравнения. При этом система помогает пользователю: когда процедура предполагает проверку на значимость, STATISTICA выделяет значимые элементы красным цветом (т.е. отвергается нулевая гипотеза о равенстве параметров нулю). В нашем случае |t факт | > t табл для обоих параметров, следовательно они значимы.

Рис. 43. Параметры уравнения регрессии для данных импорта за четвертый период (линейный тренд)

Для оценки статистической значимости уравнения в целом на закладке Advanced воспользуемся кнопкой ANOVA (Goodness Of Fit), позволяющей получить таблицу дисперсионного анализа и значение F-критерия Фишера.

Рис. 44. Таблица дисперсионного анализа

Sums of Squares – сумма квадратов отклонений: на пересечении со строкой Regression – сумма квадратов отклонений теоретических (полученных по уравнению регрессии) значений признака от средней величины. Эта сумма квадратов используется для расчета факторной, объясненной дисперсии зависимой переменной. На пересечении со строкой Residual – сумма квадратов отклонений теоретических и фактических значений переменной (для расчета остаточной, необъясненной дисперсии), Total – отклонений фактических значений переменной от средней величины (для расчета общей дисперсии). Столбец df – число степеней свободы, Means Squares обозначает дисперсию: на пересечении со строкой Regression – факторную, со строкой Residual - остаточную, F – критерий Фишера, используемый для оценки общей значимости уравнения и коэффициента детерминации, p-level – уровень значимости.

Параметры уравнения тренда в STATISTICA, как и в большинстве других программ, рассчитываются по метод наименьших квадратов (МНК).

Метод позволяет получить значения параметров, при которых обеспечивается минимизация суммы квадратов отклонений фактических уровней от сглаженных, т. е. полученных в результате аналитического выравнивания.

Математический аппарат метода наименьших квадратов описан в большинстве работ по математической статистике, поэтому нет необходимости подробно на нем останавливаться. Напомним только некоторые моменты. Так, для нахождения параметров линейного тренда (2.10) необходимо решить систему уравнений:

Данная система уравнений упрощается, если значения t подобрать таким образом, чтобы их сумма равнялась нулю, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Очевидно, что перенос начала координат имеет смысл только при ручной обработке динамического ряда.

Если , то , .

В общем виде систему уравнений для нахождения параметров полинома можно записать как

При сглаживании временного ряда по экспоненте (которая часто используется в экономических исследованиях) для определения параметров следует применить метод наименьших квадратов к логарифмам исходных данных.

После переноса начала отсчета времени в середину ряда получают:

следовательно:

Если наблюдаются более сложные изменения уровней временного ряда и выравнивание осуществляется по показательной функции вида , то параметры определяются в результате решения следующей системы уравнений:

В практике исследования социально-экономических явлений исключительно редко встречаются динамические ряды, характеристики которых полностью соответствуют признакам эталонных математических функций. Это обусловлено значительным числом факторов разного характера, влияющих на уровни ряда и тенденцию их изменения.

На практике чаще всего строят целый ряд функций, описывающих тренд, а затем выбирают лучшую на основе того или иного формального критерия.

Рис. 45. Закладка Residuals/Assumptions/Prediction

Здесь воспользуемся кнопкой Perform Residual Analysis, открывающую модуль анализа остатков. Под остатками (Residuals) в данном случае понимается отклонение исходных значений динамического ряда от прогнозируемых, в соответствии с выбранным уравнением тренда. Сразу же переходим к закладке Advanced.

Рис. 46. Закладка Advanced в Perform Residual Analysis

Воспользуемся кнопкой Summary: Residuals & Predicted, позволяющую получить одноименную таблицу, которая содержит исходные значения динамического ряда Observed Value, прогнозируемые значения по выбранной модели тренда Predicted Value, отклонения прогнозных значений от исходных Residual Value, а также различные специальные показатели и стандартизированные значения. Также в таблице представлены максимальное, минимальное значения, средняя и медиана по каждому столбцу.

Рис. 47. Таблица, содержащая показатели и специальные значения для линейного тренда

В данной таблицы наибольший интерес для нас представляет столбец Residual Value, значения которого в дальнейшем используются для характеристики качества подбора тренда, а также столбец Predicted Value, который содержит прогнозные значения динамического ряда в соответствии с выбранной моделью тренда (в нашем случае – линейной).

Далее построим график исходного временного ряда совместно с вычисленными в соответствии с линейным уравнением тренда прогнозными значениями для четвертого периода. Для этого лучше всего скопировать значения из столбца Predicted Value в таблицу, в которой были созданы переменные для построения трендов.

Рис. 48. Третий период динамического ряда импорта (млрд. $) и линейный тренд

Итак, мы получили все необходимые результаты расчета параметров тренда, выраженного линейной моделью, для четвертого периода исходного динамического ряда, а также построили график данного ряда, совмещенный с линией тренда. Далее будут представлены остальные модели трендов.

Следует заметить, что в результате линеаризации степенной и экспоненциальной функций STATISTICA возвращает значение линеаризованной функции равное , поэтому для дальнейшего использования их надо преобразовать с помощью следующей элементарной транзакции , в том числе и для построения графических изображений. Для гиперболических функций, а также для обратнологарифмической функции необходимо выполнить преобразование вида .

Для этого также целесообразно создать дополнительные переменные и получить их с помощью формул на основе уже имеющихся переменных.

Итак, при решении задачи с помощью процедуры Multiple Regression, необходимо в качестве переменных выбрать натуральные логарифмы исходного ряда и оси времени.

Рис. 49. Основные показатели уравнения для данных импорта за третий период (степенная модель)

Рис. 50. Параметры уравнения регрессии для данных импорта за третий период (степенная модель)

Рис. 51. Таблица дисперсионного анализа

Рис. 52. Таблица, содержащая показатели и специальные значения для степенной модели

Затем, как и в случае с линейным трендом, копируем значения из столбца Predicted Value в таблицу, но там для этого строим еще одну переменную, в которой получаем прогнозные значения по степенной функции с помощью преобразования .

Рис. 53. Создание дополнительной переменной

Рис. 54. Таблица со всеми переменными

Рис. 55. Третий период динамического ряда импорта (млрд. $) и степенная модель

Рис.56. Основные показатели уравнения для данных импорта за третий период (экспоненциальная модель)

Рис. 57. Третий период динамического ряда импорта (млрд. $) и экспоненциальная модель

Рис.58. Основные показатели уравнения для данных импорта за третий период (обратная модель)

Рис. 59. Третий период динамического ряда импорта (млрд. $) и обратная модель

Рис. 60. Основные показатели уравнения для данных импорта за третий период (полином второй степени)

Рис. 61. Третий период динамического ряда импорта (млрд. $) и полином второй степени

Рис. 62. Основные показатели уравнения для данных импорта за третий период (полином 3-й степени)

Рис. 63. Третий период динамического ряда импорт (млрд. $) и полином 3-й степени


Рис. 64. Основные показатели уравнения для данных импорта за третий период (гипербола 1-ого вида)

Рис. 65. Третий период динамического ряда импорт (млрд. $) и гипербола 1-ого вида


Рис. 66. Основные показатели уравнения для данных импорта за третий период (гипербола 3 типа)

Рис. 67. Третий период динамического ряда импорт и гипербола 3 типа


Рис. 68. Основные показатели уравнения для данных импорта за третий период (логарифмическая модель)

Рис. 69. Третий период динамического ряда импорт (млрд. $) и логарифмическая модель


Рис. 70. Основные показатели уравнения для данных импорта за третий период (обратнологарифмическая модель)

Рис. 71. Третий период динамического ряда импорт (млрд. $) и обратнологарифмическая модель


Затем построим таблицу со вспомогательными переменными для построения трендов для экспорта.

Рис. 72. Таблица со вспомогательными переменными

Проделаем те же операции что и для четвертого период импорта.

Рис. 73. Основные показатели уравнения для данных экспорта за третий период (линейная модель)

Рис. 74. Третий период динамического ряда экспорта (млрд. $) и линейная модель

Рис. 75. Основные показатели уравнения для данных экспорта за третий период (степенная модель тренда)

Рис. 76. Третий период динамического ряда экспорта и степенная модель


Рис. 77. Основные показатели уравнения для данных экспорта за третий период (экспоненциальная модель тренда)

Рис. 78. Третий период динамического ряда экспорта (млрд. $) и экспоненциальная модель


Рис. 79. Основные показатели уравнения для данных экспорта за третий период (обратная модель тренда)

Рис. 80. Третий период динамического ряда экспорта (млрд. $) и обратная модель


Рис. 81. Основные показатели уравнения для данных экспорта за третий период (полином второй степени)

Рис. 82. Третий период динамического ряда экспорта (млрд. $) и полином второй степени


Рис. 83. Основные показатели уравнения для данных экспорта за третий период (полином третей степени)

Рис. 84. Третий период динамического ряда экспорта (млрд. $) и полином третей степени


Рис. 85. Основные показатели уравнения для данных экспорта за третий период (гипербола 1-ого вида)

Рис. 86. Третий период динамического ряда экспорта и гипербола 1-ого типа


Рис. 87. Основные показатели уравнения для данных экспорта за третий период (гипербола 3-ого вида)

Рис. 88. Третий период динамического ряда экспорта (млрд. $) и гипербола 3-ого типа


Рис. 89. Основные показатели уравнения для данных экспорта за третий период (логарифмическая модель)

Рис. 90. Третий период динамического ряда экспорта (млрд. $) и логарифмическая модель


Рис. 91. Основные показатели уравнения для данных экспорта за третий период (обратнологарифмическая модель)

Рис. 91. Третий период динамического ряда экспорта (млрд. $) и обратнологарифмическая модель


Выбор наилучшего тренда

Как уже отмечалось, проблема выбора формы кривой - одна из основных проблем, с которой сталкиваются при выравнивании ряда динамики. Решение этой проблемы во многом определяет результаты экстраполяции тренда. В большинстве специализированных программ для выбора лучшего уравнения тренда предоставляется возможность воспользоваться следующими критериями:

Минимальное значение среднеквадратической ошибки тренда:

,

где - фактические уровни ряда динамики;

Уровни ряда, определенные по уравнению тренда;

n - число уровней ряда;

p - число факторовв уравнении тренда.

- минимальное значение остаточной дисперсии:

Минимальное значение средней ошибки аппроксимации;

Минимальное значение средней абсолютной ошибки;

Максимальное значение коэффициента детерминации;

Максимальное значение F- критерия Фишера:

: ,

где k – число степеней свободы факторной дисперсии,равное числу независимых переменных (признаков-факторов) в уравнении;

n-k-1 - число степеней свободы остаточной дисперсии.

Применение формального критерия для выбора формы кривой, по-видимому, даст практически пригодные результаты в том случае, если отбор будет проходить в два этапа. На первом этапе отбираются зависимости, пригодные с позиции содержательного подхода к задаче, в результате чего происходит ограничение круга потенциально приемлемых функций. На втором этапе для этих функций подсчитываются значения критерия и выбирается та из кривых, которой соответствует минимальное его значение.

В данном пособии для идентификации тренда используется формальный метод, который основывается на использовании численного критерия. В качестве такого критерия рассматривается максимальный коэффициент детерминации:

.

Расшифровка обозначений и формулы данных показателей даны в предыдущих разделах. Коэффициент детерминации показывает, какая доля общей дисперсии результативного признака обусловлена вариацией признака – фактора. В таблицах STATISTICA он обозначается как R?.

В следующей ниже таблице будут представлены уравнения моделей трендов и коэффициенты детерминации данных импорта.

Таблица 6

Уравнения моделей трендов и коэффициенты детерминации Import.

Сопоставив значения коэффициентов детерминации для различных типов кривых можно сделать вывод о том, что для исследуемого третьего периода лучшей формой тренда будет полином третей степени для импорта и для экспорта.

Далее необходимо проанализировать выбранную модель тренда с точки зрения ее адекватности реальным тенденциям исследуемого временного ряда через оценку надежности полученных уравнений трендов по F-критерию Фишера. В данном случае расчетное значение критерия Фишера для импорта равно 16,573; для экспорта – 13,098, а табличное значение при уровне значимости равно 3,07. Следовательно, эта модель тренда признается адекватно отражающей реальную тенденцию изучаемого явления.

Когда тип тренда установлен, необходимо вычислить оптимальные значения параметров тренда исходя из фактических уровней. Для этого обычно используют метод наименьших квадратов (МНК). Его значение уже рассмотрено в предыдущих главах учебного пособия, в данном случае оптимизация состоит в минимизации суммы квадратов отклонений фактических уровней ряда от выравненных уровней (от тренда). Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда. Рассмотрим лишь три такие системы: для прямой, для параболы 2-го порядка и для экспоненты. Приемы определения параметров других типов тренда рассматриваются в специальной монографической литературе.

Для линейного тренда нормальные уравнения МНК имеют вид:

Нормальные уравнения МНК для экспоненты имеют следующий вид:

По данным табл. 9.1 рассчитаем все три перечисленных тренда для динамического ряда урожайности картофеля с целью их сравнения (см. табл. 9.5).

Таблица 9.5

Расчет параметров трендов

Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:

у ̂ = 172,2 + 4,418t , где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год

Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид у̃ = 177,75 + 4,418t - 0.5571t 2 ; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33) lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.

Уравнение экспоненциального тренда имеет вид: y ̅ = 171,1·1,02628 t .

Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.

Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблице представлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b . так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.

В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно, если истинный тренд - экспонента; в данном случае совпадения нет, но различие, мало. Графа МАЕ -это дисперсия s 2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.

Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.

Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями t p и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (t i = 0 ), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.

Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:

L = п + 1 - т.

Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.

Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.

Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.

Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень t i = 1, свободный член будет равен: a 0 = у ̅ - b ((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.

Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам:

Таблица 9.7

Многократное скользящее выравнивание по прямой



Уравнение тренда: у ̂ = 104,53 - 1,433t ; t = 0 в 1987 г. Итак, индекс цен в среднем за год снижался на 1,433 пункта. Однократное выравнивание по всем 17 уровням может исказить этот параметр, ибо начальный уровень содержит значительное отрицательное отклонение, а конечный уровень - положительное. В самом деле, однократное выравнивание дает величину среднегодового изменения индекса всего на 0,953 пункта.




9.7. Методика изучения и показатели колеблемости

Если при изучении и измерении тенденции динамики колебания уровней играли лишь роль помех, «информационного шума», от которого следовало по возможности абстрагироваться, то в дальнейшем сама колеблемость становится предметом статистического исследования. Значение изучения колебаний уровней динамического ряда очевидно: колебания урожайности, продуктивности скота, производства мяса экономически нежелательны, так как потребность в продукции агрокомплекса постоянна. Эти колебания следует уменьшать, применяя прогрессивную технологию и другие меры. Напротив, сезонные колебания объемов производства зимней и летней обуви, одежды, мороженого, зонтиков, коньков - необходимы и закономерны, так как спрос на эти товары тоже колеблется по сезонам и равномерное производство требует лишних затрат на хранение запасов. Регулирование рыночной экономики как со стороны государства, так и производителей в значительной мере состоит в регулировании колебаний экономических процессов.

Типы колебаний статистических показателей весьма разнообразны, но все же можно выделить три основных: пилообразную или маятниковую колеблемость, циклическую долгопериодическую и случайно распределенную во времени колеблемость. Их свойства и отличия друг от друга хорошо видны при графическом изображении рис. 9.2.

Пилообразная или маятниковая колеблемость состоит в попеременных отклонениях уровней от тренда в одну и в другую сторону. Таковы автоколебания маятника. Такие автоколебания можно наблюдать в динамике урожайности при невысоком уровне агротехники: высокий урожай при благоприятных условиях погоды выносит из почвы больше питательных веществ, чем их образуется естественным путем за год; почва обедняется, что вызывает снижение следу- ющего урожая ниже тренда, он выносит меньше питательных веществ, чем образуется за год, плодородие возрастает и т.д.

Рис. 9.2. Виды колебаний

Циклическая долгопериодическая колеблемость свойственна, например, солнечной активности (10-11-летние циклы), а значит, и связанным с ней на Земле процессам - полярным сияниям, грозовой деятельности, урожайности отдельных культур в ряде районов, некоторым заболеваниям людей, растений. Для этого типа характерны редкая смена знаков отклонений от тренда и кумулятивный (накапливающийся) эффект отклонений одного знака, который может тяжело отражаться на экономике. Зато колебания хорошо прогнозируются.

Случайно распределенная во времени колеблемость - нерегулярная, хаотическая. Она может возникать при наложении (интерференции) множества колебаний с разными по длительности циклами. Но может возникать в результате столь же хаотической колеблемости главной причины существования колебаний, например суммы осадков за летний период, температуры воздуха в среднем за месяц в разные годы.

Для определения типа колебаний применяются графическое изображение, метод «поворотных точек» М. Кендэла, вычисление коэффициентов автокорреляции отклонений от тренда. Эти методы будут рассмотрены далее.

Основными показателями, характеризующими силу колеблемости уровней, выступают уже известные по главе 5 показатели, характеризующие вариацию значений признака в пространственной совокупности. Однако вариация в пространстве и колеблемость во времени принципиально различны. Прежде всего различны их основные причины. Вариация значений признака у одновременно существующих единиц возникает из-за различий в условиях существования единиц совокупности. Например, разная урожайность картофеля в совхозах области в 1990 г. вызвана различиями в плодородии почв, в качестве семян, в агротехнике. А вот суммы эффективных температур за вегетационный период и осадков не являются причинами пространственной вариации, так как в одном и том же году на территории области эти факторы почти не варьируют. Напротив, главными причинами колебания урожайности картофеля в области за ряд лет как раз являются колебания метеорологических факторов, а качество почв колебаний почти не имеет. Что же касается общего прогресса агротехники, то он является причиной тренда, но не колеблемости.

Второе коренное отличие состоит в том, что значения варьирующего признака в пространственной совокупности можно считать в основном не зависимыми друг от друга, напротив, уровни динамического ряда, как правило, являются зависимыми: это показатели развивающегося процесса, каждая стадия которого связана с предыдущими состояниями.

В-третьих, вариация в пространственной совокупности измеряется отклонениями индивидуальных значений признака от среднего значения, а колеблемость уровней динамического ряда измеряется не их отличиями от среднего уровня (эти отличия включают и тренд, и колебания), а отклонениями уровней от тренда.

Поэтому лучше использовать разные термины: различия признака в пространственной совокупности называть только вариацией, но не колебаниями: никто же не станет называть различия численности населения Москвы, Петербурга, Киева и Ташкента «колебаниями числа жителей»! Отклонения уровней динамического ряда от тренда будем называть всегда колеблемостью. Колебания всегда происходят во времени, не может существовать колебаний вне времени, в фиксированный момент.

На основе качественного содержания понятия колеблемости строится и система ее показателей. Показателями силы колебании уровней являются: амплитуда отклонений уровней отдельных периодов или моментов от тренда (по модулю), среднее абсолютное отклонение уровней от тренда (по модулю), среднее квадратическое откло;-нение уровней от тренда. Относительные меры колеблемости: относительное линейное отклонение от тренда и коэффициент колеблемости - аналог коэффициента вариации.

Особенностью методики вычисления средних отклонений от тренда является необходимость учета потерь степеней свободы колебаний на величину, равную числу параметров уравнения тренда. Например, прямая линия имеет два параметра, и, как известно из геометрии, через любые две точки можно провести прямую линию. Значит, имея лишь два уровня, мы проведем линию тренда точно через эти два уровня, и никаких отклонений уровней от тренда не окажется, хотя на самом деле и эти два уровня включали колебания, не были свободны от действия факторов колеблемости. Парабола второго порядка пройдет точно через любые три точки и т.п.

Учитывая потерю степеней свободы, основные абсолютные показатели колеблемости вычисляются по формулам (9.34) и (9.35):

среднее линейное отклонение

(9.34)

среднее квадратичное отклонение

(9.35)

где y i - фактический уровень;

y ̂ i - выравненный уровень, тренд;

n - число уровней;

р - число параметров тренда.

Знак времени «t » в скобках после показателя означает, что это показатель не обычной пространственной вариации, как в главе V, а показатель колеблемости во времени.

Относительные показатели колеблемости вычисляются делением абсолютных показателей на средний уровень за весь изучаемый период. Расчет показателей колеблемости проведем по результатам анализа динамики индекса цен (см. табл. 9.7). Тренд примем по результатам многократного скользящего выравнивания, т. е. у ̂ = 104,53 - 1,433t ; t = 0 в 1987 г.

1. Амплитуда колебаний составила от -14,0 в 1986 г. до +15,2 в 1984 г., т.е. 29,2 пункта.

2. Среднее линейное отклонение по модулю найдем, сложив модули |u i | (их сумма равна 132,3), и разделив на (п - р), согласно формуле (9.34):

=8,82 пункта.

3. Среднее квадратическое отклонение уровней от тренда по формуле (9.35) составило:

= 9,45 пункта.

Небольшое превышение среднего квадратического отклонения над линейным указывает на отсутствие среди отклонений резко выделяющихся по абсолютной величине.

4. Коэффициент колеблемости: или 9,04%. Колеблемость умеренная, не сильная. Для сравнения приводим показатели (без расчета) по колебаниям урожайности картофеля, данные таблиц 9.1 и 9.5 - отклонение от линейного тренда:

s (t ) = 14,38 ц с 1 га, v (t ) = 8,35%.

Для выявления типа колебаний воспользуемся приемом, предложенным М. Кендэлом. Он состоит в подсчете так называемых «поворотных точек» в ряду отклонений от тренда и i т. е. локальных экстремумов. Отклонение, либо большее по алгебраической величине, либо меньшее двух соседних, отмечается точкой. Обратимся к рис. 9.2. При маятниковой колеблемости все отклонения, кроме двух крайних, будут «поворотными», следовательно, их число составит п - 1. При долгопериодических циклах на цикл приходятся один минимум и один максимум, а общее число точек составит 2(n : l ), где l - длительность цикла. При случайно распределенной во времени колеблемости, как доказал М. Кендэл, число поворотных точек в среднем составит: 2/3 (n - 2). В нашем примере при маятниковой колеблемости было бы 15 точек, при связанной с 11-летним циклом было бы 2-(17: 11) ≈ 3 точки, при случайно распределенной во времени в среднем было бы (2/3)·(17-2) =10 точек.

Фактическое число точек 6 выходит за границы двукратного среднего квадратического отклонения числа поворотных точек, которое по Кендэлу равно , в нашем случае .

Наличие 6 точек, при 2 точках за цикл, означает, что в ряду могут быть примерно 3 цикла, продолжительность периода которых 5,5 - 6 лет. Возможно сочетание таких циклических колебаний со случайными.

Другой метод анализа типа колеблемости и поиска длины цикла основан на вычислении коэффициентов автокорреляции отклонений от тренда.

Автокорреляция - это корреляция между уровнями ряда или отклонениями от тренда, взятыми со сдвигом во времени: на 1 период (год), на 2, на 3 и т. д., поэтому говорят о коэффициентах автокорреляции разных порядков: первого, второго и т. д. Рассмотрим сначала коэффициент автокорреляции отклонений от тренда первого порядка.

Одна из основных формул для расчета коэффициента автокорреляции отклонений от тренда имеет вид:

(9.36)

Как легко видеть по табл. 9.7, первое и последнее в ряду отклонения участвуют только в одном произведении в числителе, а все прочие отклонения от второго до (п - 1)-го - в двух. Поэтому и в знаменателе квадраты первого и последнего отклонений следует взять с половинным весом, как в хронологической средней. По данным табл. 9.7 имеем:

Теперь обратимся к рис. 9.2. При маятниковой колеблемости все произведения в числителе будут отрицательными величинами, и коэффициент автокорреляции первого порядка будет близок к -1. При долголериодических циклах будут преобладать положительные произведения соседних отклонений, а смена знака происходит лишь дважды за цикл. Чем длиннее Цикл, тем больше перевес положительных произведений в числителе, и коэффициент автокорреляции первого порядка ближе к +1. При случайно распределенной во времени колеблемости знаки отклонений чередуются хаотически, число положительных произведений близко к числу отрицательных, ввиду чего коэффициент автокорреляции близок к нулю. Полученное значение говорит о наличии как случайно распределенных во времени колебаний, так и циклических. Коэффициенты автокорреляции следующих порядков: II = - 0,577; Ш = -0,611; IV == -0,095; V = +0,376; VI = +0,404; VII = +0,044. Следовательно, противофаза цикла ближе всего кЗ годам (наибольший отрицательный коэффициент при сдвиге на 3 года), а совпадающие фазы ближе к б годам, что и дает длину цикла колебаний. Эти максимальные по абсолютной величине коэффициенты не близки к единице. Это означает, что циклическая колеблемость смешана со значительной случайной колеблемостью. Таким образом, подробный автокорреляционный анализ в целом дал те же результаты, что и выводы по автокорреляции первого порядка.

Если динамический ряд достаточно длинен, можно поставить и решить задачу об изменении показателей колеблемости с течением времени. Для этого рассчитывают эти показатели по подпериодам, но длительностью не менее 9-11 лет, иначе измерения колеблемости ненадежны. Кроме того, можно рассчитывать показатели колеблемости скользящим способом, а затем произвести их выравнивание, т. е. вычислить тренд показателей колеблемости. Это полезно, чтобы сделать вывод о действенности мер, применявшихся для уменьшения колебаний урожайности и других нежелательных колебаний, а также для того, чтобы по тренду сделать прогноз ожидаемых в будущем размеров колебаний.

9.8. Измерение устойчивости в динамике

Понятие «устойчивость» используется в весьма различных смыслах. По отношению к статистическому изучению динамики мы рассмотрим два аспекта этого понятия: 1) устойчивость как категория, противоположная колеблемости; 2) устойчивость направленности изменений, т. е. устойчивость тенденции.

В первом понимании показатель устойчивости, который может быть только относительным, должен изменяться от нуля до единицы (100%). Это разность между единицей и относительным показателем колеблемости. Коэффициент колеблемости составил 9,0%. Следовательно, коэффициент устойчивости равен 100% - 9,0% = 91,0%. Этот показатель характеризует близость фактических уровней к тренду и совершенно не зависит от характера последнего. Слабая колеблемость и высокая устойчивость уровней в данном смысле могут существовать даже при полном застое в развитии, когда тренд выражен горизонтальной прямой.

Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс их направленного изменения. Можно узнать, например, насколько устойчив процесс сокращения удельных затрат ресурсов на производство единицы продукции, является ли устойчивой тенденция снижения детской смертности и т. д. С этой точки зрения полной устойчивостью направленного изменения уровней динамического ряда следует считать такое изменение, в процессе которого каждый следующий уровень либо выше всех предшествующих (устойчивый рост), либо ниже всех предшествующих (устойчивое снижение). Всякое нарушение строго ранжированной последовательности уровней свидетельствует о неполной устойчивости изменений.

Из определения понятия устойчивости тенденции вытекает и метод построения ее показателя. В качестве показателя устойчивости можно использовать коэффициент корреляции рангов Ч. Спирмэна (Spearman) - r x .

где п - число уровней;

Δ i - разность рангов уровней и номеров периодов времени.

При полном совпадении рангов уровней, начиная с наименьшего, и номеров периодов (моментов) времени по их хронологическому порядку коэффициент корреляции рангов равен +1. Это значение соответствует случаю полной устойчивости возрастания уровней. При полной противоположности рангов уровней рангам лет коэффициент Спирмэна равен -1, что означает полную устойчивость процесса сокращения уровней. При хаотическом чередовании рангов уровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции. Приведем расчет коэффициента корреляции Спирмэна по данным о динамике индекса цен (табл. 9.7) в табл. 9.8.

Таблица 9.8

Расчет коэффициентов корреляции рангов Спирмена

Ранг лет, Р x

Ранг уровней, Р у

Р x y

(P x -P y ) 2

Ввиду наличия трех пар «связанных рангов» применяем формулу (8.26):

Отрицательное значение r x указывает на наличие тенденции снижения уровней, причем устойчивость этой тенденции ниже средней.

При этом следует иметь в виду, что даже при 100%-ной устойчивости тенденции в ряду динамики может быть колеблемость уровней, и коэффициент их устойчивости будет ниже 100%. При слабой колеблемости, но еще более слабой тенденции, напротив, возможен высокий коэффициент устойчивости уровней, но близкий к нулю коэффициент устойчивости тренда. В целом же оба показателя связаны, конечно, прямой зависимостью: чаще всего большая устойчивость уровней наблюдается одновременно с большей устойчивостью тренда.

Устойчивость тенденции развития или комплексная устойчивость, в динамике может быть охарактеризована соотношением между среднегодовым абсолютным изменением и средним квадратическим (либо линейным) отклонением уровней от тренда:

Если, как нередко бывает, распределение отклонений уровней ряда от тренда близко к нормальному, то с вероятностью 0,95 отклонение от тренда вниз не превысит 1,645s (t ) по величине. Следовательно, если в ряду динамики

с > 1,64, то уровни, более низкие, чем предыдущие, в среднем будут встречаться менее 5раз за 100 периодов, или 1 раз из 20, т. е. устойчивость тренда будет высока. При с = 1 нарушения ранжированности уровней будут встречаться в среднем 16 раз из 100, а при с = 0,5 – уже 31 раз из 100, т. е. устойчивость тенденции будет низкой. Можно также пользоваться отношением среднего темпа прироста к коэффициенту колеблемости, что дает показатель, близкий к с - показателю устойчивости. Этот показатель более пригоден для экспоненциального тренда. О показателях устойчивости нелинейных трендов и об общих проблемах устойчивости экономических и социальных процессов можно подробнее прочесть в рекомендуемой к данной главе литературе .

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»