Закон распределения дискретной случайной величины. Ряд распределения

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Рассмотренный выше пример позволяет сделать вывод, что значения, используемые для анализа зависят от случайных причин, поэтому такие переменные величины называются случайными . В большинстве случаев они появляются в результате наблюдений или экспериментов, которые сводятся в таблицы, в первой строке которой записываются различные наблюдаемые значения случайной величины Х, а во второй – соответствующие частоты. Поэтому такая таблица называется эмпирическим распределением случайной величины Х или вариационным рядом . Для вариационного ряда мы находили среднее значение , дисперсию и среднее квадратическое отклонение .

непрерывной , если ее значения целиком заполняют некоторый числовой промежуток.

Случайная величина называется дискретной , если все ее значения можно занумеровать (в частности, если оно принимает конечное число значений).

Следует отметить два характерных свойства таблицы распределения дискретной случайной величины:

Все числа второй строки таблицы положительны;

Их сумма равна единице.

В соответствие с проведенными исследованиями можно предположить, что при увеличении числа наблюдений эмпирическое распределение приближается к теоретическому, заданному в табличной форме.

Важной характеристикой дискретной случайное величины является ее математическое ожидание.

Математическим ожиданием дискретной случайной величины Х, принимающей значения , , …, .с вероятностями , , …, называется число:

Математическое ожидание также называют средним значением.

К другим важным характеристикам случайной величины относятся дисперсия (8) и среднее квадратическое отклонение (9).

где: математическое ожидание величины X.

. (9)

Графическое представление информации значительно нагляднее, чем табличное, поэтому возможность электронных таблиц MS Excel представлять размещенные в них данные в виде различных диаграмм, графиков и гистограмм используется очень часто. Так, помимо таблицы, распределение случайной величины изображают также с помощью многоугольника распределения . Для этого на координатной плоскости строят точки с координатами , , … и соединяют их прямыми отрезками.



Для получения прямоугольника распределения посредством MS Excel необходимо:

1. Выбрать на панели инструментов закладу «Вставка» ® «Диаграмма с областями».

2. Активизировать появившуюся на листе MS Excel область для диаграммы правой кнопкой мыши и в контекстном меню воспользоваться командой «Выбрать данные».

Рис. 6. Выбор источника данных

Сначала определим диапазон данных для диаграммы. Для этого в соответствующую область диалогового окна «Выбор источника данных» введем диапазон C6:I6 (в нем представлены значения частот под названием Ряд1, рис. 7).

Рис. 7. Добавление ряда 1

Для изменения названия ряда необходимо выбрать кнопку изменить область «Элементы легенды (ряды)» (см. рис. 7) и назвать его .

Для того, чтобы добавить подпись оси X необходимо воспользоваться кнопкой «Изменить» области «Подписи горизонтальной оси (категории)»
(рис. 8) и указать значения ряда (диапазон $C$6:$I$6).

Рис. 8. Окончательный вид окна диалога «Выбор источника данных»

Выбор кнопки в окне диалога «Выбор источника данных»
(рис. 8) позволит получить требуемый многоугольник распределения случайной величины (рис. 9).

Рис. 9. Многоугольник распределения случайной величины

Внесем некоторые изменения в дизайн полученной графической информации:

Добавим подпись оси Х;

Отредактируем подпись оси Y;

- добавим заголовок для диаграммы «Многоугольник распределения».

Для этого выберем в области панели инструментов закладку «Работа с диаграммами» закладку «Макет» и в появившейся панели инструментов соответствующие кнопки: «Название диаграммы», «Названия осей» (рис. 10).

Рис. 10. Итоговый вид многоугольника распределения случайной величины

Задача 14. В денежной лотерее разыгрывается 1 выигрыш в 1000000 руб., 10 выигрышей по 100000 руб. и 100 выигрышей по 1000 руб. при общем числе билетов 10000. Найти закон распределения случайного выигрыша Х для владельца одного лотерейного билета.

Решение . Возможные значения для Х : х 1 = 0; х 2 = 1000; х 3 = 100000;

х 4 = 1000000. Вероятности их соответственно равны: р 2 = 0,01; р 3 = 0,001; р 4 = 0,0001; р 1 = 1 – 0,01 – 0,001 – 0,0001 = 0,9889.

Следовательно, закон распределения выигрыша Х может быть задан следующей таблицей:

Построить многоугольник распределения.

Решение . Построим прямоугольную систему координат, причем по оси абсцисс будем откладывать возможные значения х i , а по оси ординат – соответствующие вероятности р i . Построим точки М 1 (1;0,2), М 2 (3;0,1), М 3 (6;0,4) и М 4 (8;0,3). Соединив эти точки отрезками прямых, получим искомый многоугольник распределения.

§2. Числовые характеристики случайных величин

Случайная величина полностью характеризуется своим законом распределения. Осредненное описание случайной величины можно получить при использовании ее числовых характеристик

2.1. Математическое ожидание. Дисперсия.

Пусть случайная величина может принимать значения с вероятностями соответственно .

Определение. Математическим ожиданием дискретной случайной величинаы называется сумма произведений всех ее возможных значений на соответствующие вероятности:

.

Свойства математического ожидания.

Рассеяние случайной величины около среднего значения характеризуют дисперсия и среднеквадратическое отклонение.

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Для вычислений используется следующая формула

Свойства дисперсии.

2. , где взаимно независимые случайные величины.

3. Среднеквадратическое отклонение .

Задача 16. Найти математическое ожидание случайной величины Z = X+ 2Y , если известны математические ожидания случайных величин X и Y : М (Х ) = 5, М (Y ) = 3.

Решение . Используем свойства математического ожидания. Тогда получаем:

М (Х+ 2Y ) = М (Х ) + М (2Y ) = М (Х ) + 2М (Y ) = 5 + 2 . 3 = 11.

Задача 17. Дисперсия случайной величины Х равна 3. Найти дисперсию случайных величин: а) –3Х; б) 4Х + 3.

Решение . Применим свойства 3, 4 и 2 дисперсии. Имеем:

а) D (–3Х ) = (–3) 2 D (Х ) = 9 D (Х ) = 9 . 3 = 27;

б) D (4 Х + 3) = D (4Х ) + D (3) = 16D (Х ) + 0 = 16 . 3 = 48.

Задача 18. Дана независимая случайная величина Y – число очков, выпавших при бросании игральной кости. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины Y .

Решение. Таблица распределения случайной величины Y имеет вид:

Y
р 1/6 1/6 1/6 1/6 1/6 1/6

Тогда М (Y ) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6+ 4 · 1/6+ 5 · 1/6+ 6 · 1/6 = 3,5;

D (Y ) = (1 – 3,5) 2 · 1/6 +(2 – 3,5) 2 · /6 + (3 – 3,5) 2 · 1/6 + (4 – 3,5) 2 · /6 +(5 – –3,5) 2 · 1/6 + (6 – 3,5) 2. · 1/6 = 2,917; σ (Y ) 2,917 = 1,708.

Понятие случайной величины. Закон распределения случайной величины

Случайные величины (сокращенно: с. в.) обозначаются прописны­ми латинскими буквами Х,У, Z,... (или строчными греческими буква­ми ξ (кси), η(эта), θ (тэта), ψ (пси) и т. д.), а принимаемые ими значения соответственно малыми буквами х 1 , х 2 ,…, у 1 , у 2 , у 3

Примерами с. в. могут служить: 1) X - число очков, появляющих­ся при бросании игральной кости; 2) У - число выстрелов до первого попадания в цель; 3) Z - время безотказной работы прибора и т. п. (рост человека, курс доллара, количество бракованных деталей в пар­тии, температура воздуха, выигрыш игрока, координата точки при слу­чайном выборе ее на , прибыль фирмы, ...).

Случайной величиной X Ώ w

X(w), т.е. X = X(w), w Î Ώ (или X = f (w)) (31)

Пример1. Опыт состоит в бросании монеты 2 раза. На ПЭС Ώ={ w 1 , w 2 , w 3 , w 4 }, где w 1 = ГГ, w 2 = ГР, w 3 = РГ, w 4 = РР, можно рассмотреть с. в. X - число появлений герба. С. в. X является функ­цией от элементарного события w i : X( w 1 ) = 2, X( w 2 ) = 1, X( w 3 ) = 1, X( w 4 )= 0; X - д. с. в. со значениями x 1 = 0, x 2 =1 , x 3 = 2.

X(w) S Р(А) = Р(Х < х).

X - д. с. в.,

x 1 , x 2 , x 3 ,…,x n ,…

p i , где i = 1,2,3, ...,n,… .

Закон распределения д. с. в. p i =Р{Х=x i }, i=1,2,3,... ,n,...,

с. в. X x i . :

X x 1 x 2 …. x n
P p 1 p 2 …. p n

Так как события {X = x 1 }, {X = x 2 },…,{X = x n }, т.е. .

(x 1 , p 1 ), (x 2 , p 2),…, (x n , p n) называют многоугольником (или полигоном) рас­пределения (см. рис. 17).

Случайная величина X дискретна, если существует конечное или счетное множество чисел x 1 , x 2 , ..., x n таких, что Р{Х = x i } = p i > 0 (i = 1,2,...) p 1 + p 2 + p 3 +…= 1 (32)

Суммой д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X + Y , принимающая значения z ij = x i + y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых сумм x i + y j соответствующие вероятности складываются.

Разностью д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X - Y, принимающая значения z ij = x i – y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых разностей x i – y j соответствующие вероятности складываются.



Произведением д. с. в. X, принимающей зна­чения x i с вероятностями p i = Р{Х = x i }, i = 1,2,3,... ,n, и д. с. в. Y, при­нимающей значения y j с вероятностями p i = Р{Y = y j }, j = 1,2,3,... ,m, называется д. с. в. Z = X × Y, принимающая значения z ij = x i × y j с вероятностями p ij = Р{ Х = x i ,Y = y j }, для всех указанных значений i и j. В случае совпадения некоторых произведений x i × y j соответствующие вероятности складываются.

д. с. в. сХ, с x i р i = Р{Х = x i }.

X и Y события {X = x i } = А i и {Y = y j } = В j независимы для любых i= 1,2,... ,n; j = l,2,...,m, т.е.

P{X = x i ;Y = y j } =P{X = x i } ×P {Y = y j } (33)

Пример 2. В урне 8 шаров, из которых 5 белых, остальные - чер­ные. Из нее вынимают наудачу 3 шара. Найти закон распределения числа белых шаров в выборке.

Опытом называется всякое осуществление определенных условий и действий при которых наблюдается изучаемое случайное явление. Опыты можно характеризовать качественно и количественно. Случайной называется величина, которая в результате опыта может принимать то или иное значение., причем заранее не известно какое именно.

Случайные величины принято обозначать (X,Y,Z), а соответствующие им значения (x,y,z)

Дискретными называются случайные величины принимающие отдельные изолированные друг от друга значения, которые можно переоценить. Непрерывными величины возможные значение которых непрерывно заполняют некоторый диапазон. Законом распределения случайной величины называется всякое соотношение устанавливающее связь между возможными значениями случайных величин и соответствующими им вероятности. Ряд и многоугольник распределения. Простейшей формой закона распределения дискретной величины является ряд распределения. Графической интерпретацией ряда распределения является многоугольник распределения.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 13.Дискретная случайная величина. Многоугольник распределения. Операции со случайными величинами, пример.:

  1. 13. Дискретная случайная величина и закон ее распределения. Многоугольник распределения. Операции со случайными величинами. Пример.
  2. Понятие «случайная величина» и ее описание. Дискретная случайная величина и ее закон (ряд) распределения. Независимые случайные величины. Примеры.
  3. 14. Случайные величины, их виды. Закон распределения вероятностей дискретной случайной величины (ДСВ). Способы здания случайных величин (СВ).
  4. 16. Закон распределения дискретной случайной величины. Числовые характеристики дискретной случайной величины: математическое ожидание, дисперсия и среднее квадратическое отклонение.
  5. Математические операции над дискретными случайными ве­личинами и примеры построения законов распределения для КХ,Х"1, X + К, XV по заданным распределениям независимых случай­ных величин X и У.
  6. Понятие случайной величины. Закон распределения дискретной случ. величины. Математич операции над случ. величинами.

Дискретной называют случайную величину, которая может принимать отдельные, изолированные значения с определенными вероятностями.

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно:

Р(0) = ; Р(1) = ; Р(2) = ; Р(3) = .

ПРИМЕР 2. Число отказавших элементов в приборе, состоящем из пяти элементов. Возможные значения: 0, 1, 2, 3, 4, 5; их вероятности зависят от надежности каждого из элементов.

Дискретная случайная величина Х может быть задана рядом распределения или функцией распределения (интегральным законом распределения).

Рядом распределения называется совокупность всех возможных значений х i и соответствующих им вероятностей р i = Р ( Х = х i ), он может быть задан в виде таблицы:

х i

х n

р i

р n

При этом вероятности р i удовлетворяют условию

р i = 1 , потому, что

где число возможных значений n может быть конечным или бесконечным.

Графическое изображение ряда распределения называется многоугольником распределения . Для его построения возможные значения случайной величины (х i ) откладываются по оси абсцисс, а вероятности р i - по оси ординат; точки А i c координатами ( х i ,р i ) соединяются ломаными линиями.

Функцией распределения случайной величины Х называется функция F (х ), значение которой в точке х равно вероятности того, что случайная величина Х будет меньше этого значения х , то есть

F (х) = Р (Х< х).

ФункцияF (х ) для дискретной случайной величины вычисляется по формуле

F (х)= р i , (1.10.1)

где суммирование ведется по всем значениям i , для которых х i < х.

ПРИМЕР 3. Из партии, содержащей 100 изделий, среди которых имеется 10 дефектных, выбраны случайным образом пять изделий для проверки их качества. Построить ряд распределений случайного числа Х дефектных изделий, содержащихся в выборке.

Решение . Так как в выборке число дефектных изделий может быть любым целым числом в пределах от 0 до 5 включительно, то возможные значения х i случайной величины Х равны:

х 1 = 0, х 2 = 1, х 3 = 2, х 4 = 3, х 5 = 4, х 6 = 5.

Вероятность Р (Х = k ) того, что в выборке окажется ровно k (k = 0, 1, 2, 3, 4, 5) дефектных изделий, равна

Р (Х = k ) = .

В результате расчетов по данной формуле с точностью 0,001 получим:

р 1 = Р (Х = 0) @ 0,583; р 2 = Р (Х = 1) @ 0,340; р 3 = Р (Х = 2) @ 0,070;

р 4 = Р (Х = 3) @ 0,007; р 5 = Р (Х = 4) @ 0; р 6 = Р (Х = 5) @ 0.

Используя для проверки равенство р k =1, убеждаемся, что расчеты и округление произведены правильно (см. табл.).

х i

р i

ПРИМЕР 4. Дан ряд распределения случайной величины Х :

х i

р i

Найти функцию распределения вероятности F (х ) этой случайной величины и построить ее.

Решение . Если х £ 10, то F ( х ) = Р (Х < х ) = 0;

если 10 < х £ 20 , то F ( х ) = Р (Х <х ) = 0,2 ;

если 20 < х £ 30 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 = 0,5 ;

если 30 < х £ 40 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 = 0,85 ;

если 40 < х £ 50 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 + 0,1=0,95 ;

если х > 50 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 + 0,35 + 0,1 + 0,05 = 1.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»