Курсовая работа: Имитационное моделирование системы массового обслуживания.

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Основы математического моделирования

социально-экономических процессов

Лекция 3

Тема лекции: «Модели систем массового обслуживания»

1. Модели организационных структур управления (ОСУ).

2. Системы и модели массового обслуживания. Классификация систем массового обслуживания (СМО).

3.Модели СМО. Показатели качества функционирования СМО.

  1. МОДЕЛИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

Многие экономические задачи связаны с системами мас-сового обслуживания (СМО), т. е. с такими системами, в кото-рых, с одной стороны, возникают массовые запросы (требо-вания) на выполнение каких-либо услуг, с другой — проис-ходит удовлетворение этих запросов.

СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания (ТМО).

Методами теории массового обслуживания (ТМО) могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых то- чек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организаций. И задача тео-рии массового обслуживания в данном случае сводится к тому, чтобы установить оптимальное соотношение между числом поступающих на базу требований на обслуживание и числом обслуживающих устройств, при котором суммар-ные расходы на обслуживание и убытки от простоя транс-порта были бы минимальными. Теория массового обслужи-вания может найти применение и при расчете площади складских помещений, при этом складская площадь рас-сматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку — как требование.

Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем. Переход к рынку требует от всех субъектов хозяйствования повышенной надежности и эффективности функционирования производств, гибкости и живучести в ответ на динамичные изменения внешней деловой среды, снижения разновидностей рисков и потерь от запоздалых и некомпетентных управленческих решений.

СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО) ЯВЛЯЮТСЯ МАТЕМАТИЧЕСКИМИ МОДЕЛЯМИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

ОРГАНИЗАЦИОННЫЕ СТРУКТУРЫ УПРАВЛЕНИЯ (ОСУ) призваны оперативно отслеживать колебания рынка и принимать в зависимости от складывающихся ситуаций компетентные управленческие решения.

Поэтому становится понятным то внимание, которое уделяют субъекты рынка (транснациональные корпорации, промышленные предприятия, коммерческие банки, фирмы, организации, малые предприятия и т.п.) выбору эффективно функционирующих организационных структур управления (ОСУ).

Взамен широко распространенных в 90-х годах двадцатого столетия ОСУ предприятий (иерархических, матричных, дуальных, параллельных и др.) сегодня в мире эффективно используются АЛЬТЕРНАТИВНЫЕ ФОРМЫ МНОГОФУНКЦИОНАЛЬНЫХ СТРУКТУР, базирующихся на принципах самоорганизации, адаптации, автономности отдельных подразделений с мягкими связями между ними .

Подобной структурой обладает множество передовых зарубежных фирм, в составе которых насчитывается множество рабочих групп с сетевыми взаимоотношениями между ними. Популярными в последнее время считаются организации, ориентированные на минимизацию потребления ресурсов, имеющие явно выраженную горизонтальную форму с координацией, осуществляемой не по иерархическому признаку, а самими рабочими группами, организованными в сеть.

Альтернативными моделями, противостоящими моделям ОСУ, созданным на базе организационной логики и жесткого регулирования, являются нечеткие структуры без иерархических уровней и структурных подразделений , основанные на координации личной ответственности и профилировании самоуправляемых групп со следующими признаками:

а) наличием относительно независимых рабочих групп с участием представителей различных подразделений, создаваемых для решения определенных проектов и проблем, при широкой свободе действий и автономии в области координации задач и принятия решений;

б) ликвидацией жестких связей между подразделениями ОСУ с введением гибких взаимосвязей.

На аналогичных принципах базируется современная концепция минимизированного по ресурсам производства: на подобных предприятиях в качестве организационных единиц используют рабочие группы с широкими полномочиями и большими возможностями самоуправления с конечной целью, заключающейся в создании разумной гибкой организации труда, опирающейся на самостоятельно действующих исполнителей, а не на синтезированные специалистами рациональные структуры; сотрудниками оцениваются возникающие проблемы, определяются возможности контактов со специалистами внутри и за пределами системы. Самоуправляемый персонал основной упор делает на самоорганизацию, заменяющую собой привнесенную извне (задаваемую сверху) жесткую упорядоченную структуру.

Крайним случаем такого подхода является создание безорганизационной, постоянно «размороженной», структуры со следующими свойствами:

Широкое творческое обсуждение любых обрабатываемых процедур и поступающих извне сигналов без учета шаблонных решений и прошлого опыта;

Автономная работа членов групп с самостоятельной организацией временных взаимосвязей и производственных соглашений между партнерами по мере необходимости для решения возникающих проблем.

Заметим, что чрезмерное увлечение одной системной функцией — гибкостью, при полном игнорировании прочих функций — интеграции, идентификации, учета и контроля, всегда опасно для устойчиво функционирующих систем, так как трудно обеспечить успешную координацию в рамках данной организации без высокой квалификации сотрудников, их способности к обучению и совершенствованию, к установлению эффективных контактов и координации.При подобной форме организации основное внимание должно уделяться созданию условий для максимального использования интеллекта человеческих ресурсов и повышения их квалификации, выделению высококвалифицированных специалистов — системщиков, увязывающих действия членов организации для достижения конечной цели. При этом в сфере системной координации существует вероятность возможных срывов, конфликтов и негативных последствий, так как ориентация на способность персонала к самоорганизации и самокоординации носит слишком общий характер. Хотя высокая компетентность, инициатива и сила воли каждого работника и влияет на жизнеспособность любой децентрализованной организации, но в целом они не могут заменить регулирующей функции целой организационной структуры.

Сегодня в мире интенсивно развивается новое направление синтеза ОСУ как обучающихся систем, характеризующихся следующими характерными особенностями:

а) привлечением высококвалифицированных экспертов-специалистов к процессам восприятия и накопления информации, а также к обучению и расширению способностей персонала;

б) постоянным изменением в процессе функционирования, расширением своих способностей взаимодействия с окружающей деловой средой и быстрой адаптацией к постоянно меняющимся внешним и внутренним условиям;

в) широким распространением открытых компьютерных сетей, охватывающих не только отдельные организации, предприятия или их конгломераты, но и целые крупные регионы и даже совокупности стран (ЕЭС, СВИФТ и др.), что обусловливает новые возможности организации и повышения эффективности работы предприятий и отраслей в масштабах всей страны и даже всего мира.

Считается, что ОСУ должна создаваться на принципах многофункциональности и многоаспектности, позволяющих эффективно контролировать сложные рынки и распределять имеющиеся ресурсы. Из анализа мирового опыта функционирования ОСУ в условиях рынка применительно к российской экономике и ее субъектам хозяйствования можно выделить следующие рекомендации:

1) иерархическую ОСУ можно сохранять и применять с минимумом риска для предприятия, если высшее руководство фирмы способно выступать в качестве координаторов проблем, а их подчиненные — в качестве «маленьких предпринимателей»; при этом предпринимательская инициатива и ответственность перемещаются с верхних в нижние эшелоны фирменной власти при исполнении иерархами действительно координаторских функций;

2) матричную ОСУ можно сохранять, если в фирме отсутствует механическое дублирование служебных инстанций и существует органичная сетевая структура с оптимальной коммуникацией;

3) дуальную ОСУ следует применять при ясности и контролируемости как ключевых связей между основными и сопутствующими структурами, так и прозрачности функций самой системы сопутствующих вторичных структур, причем они должны быть многофункциональными и многоцелевыми (типа «учебных центров»), а не специализированными, ориентированными лишь на собственные потребности;

4) параллельную ОСУ следует применять при сформированной конструктивной конкурентной культуре, сотрудничестве партнеров на базе доверия, терпимости, готовности разрешать конфликты, а в острых ситуациях иметь нейтральную «третейскую» инстанцию.

При наличии средних предприятий, состоящих из слабо интегрированных функциональных подразделений, на вторичные структуры можно возложить решение интеграционных проблем, но эффект от реализации этого механизма получится при осознании руководством подразделений создания структурной надстройки как средства поддержки их собственной позиции, а не как угрозу для их существования.

Развитие на стыке кибернетики, вычислительных сетей, менеджмента и социальной психологии направления Groupware (США), связанного с электронными информационными системами, локальными диалоговыми сетями и средствами их поддержки, обеспечивает распределенную работу больших коллективов людей в режиме прямого доступа, позволяя хранить в машинной памяти огромный объем информации (любую деловую, производственно-техническую и прочую документацию, совещания, переговоры организации и даже обычные разговоры ее сотрудников, а также всю предысторию и опыт работы), используя ее при необходимости для корректировки структуры, функций, задач, стратегии и тактики управления в деятельности конкретной организации. Такой подход по-новому раскрывает понятие обучающейся организации, обеспечивает проведение аналогий между процессами, протекающими в живых и в диалоговых компьютерных системах.

Если обучение и память обусловливают выживание живых систем, то аналогично организационное обучение и память влияют на эффективность деятельности любой организации при изменении деловой внешней среды. Обучение, как живых, так и организационных систем обязательно ведет к структурным изменениям. Организационно правильно построенная компьютерная сеть может вызывать качественный сдвиг в улучшении корпоративной деятельности. Гибкость и широта функциональных возможностей рабочих групп, реализующих управление проектами при минимуме затрат на координацию их работы, обусловливают рост и качество исполнения крупных задач, стоящих перед фирмами, необходимость оптимизации функциональных подразделений и организационных структур в целом, изменения связей между функциональными единицами в зависимости от складывающихся ситуаций.

Качество реструктуризации в живых и организационных системах определяется совокупностью унаследованного и приобретенного поведения, эффективностью обучения и памяти, организации инфраструктур, обеспечивающих совершенствование взаимосвязей и диалогов между людьми. Повышение скорости обучения и эффективности памяти организации зависит от способа управления взаимоотношениями и диалогами между людьми. Сегодня коммуникации — это координация действий, а не передача информации. Организационные инфраструктуры должны расширять возможности формирования и поддержки диалогов между людьми независимо от их традиций, культуры и др. Пример тому организация и распространение сети Internet и ей подобных.

Учет специфики моделей разновидностей СМО в практической деятельности субъектов рынка позволяет:

Провести более глубокий анализ особенностей функционирования сложных систем, оценить их качество и эффективность с получением конкретных количественных оценок;

Вскрыть имеющиеся резервы и возможности по оптимизации протекающих процессов, экономии финансовых и прочих ресурсов, снижению рисков в условиях неопределенности деловой внешней и внутренней среды.

Рассмотрим эти вопросы подробнее.

2. СИСТЕМЫ И МОДЕЛИ МАССОВОГО ОБСЛУЖИВАНИЯ. КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО).

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского уче-ного А. К. Эрланга (1878—1929), с его трудами в области проекти-рования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной мате-матики, занимающаяся анализом процессов в системах произ-водства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и пере-дачи информации; автоматических линиях производства и др.

Большой вклад в развитие этой теории внесли российские математики А. Я. Хинчин, Б. В. Гнеденко, А. Н. Колмогоров, Е. С. Вентцель и др.

Предметом теории массового обслуживания является установ-ление зависимостей между характером потока заявок, числом ка-налов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум сум-марных затрат от ожидания обслуживания, потерь времени и ре-сурсов на обслуживание и от простоев каналов обслуживания.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, напри-мер обслуживание продавцами покупателей в магазинах, обслу-живание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслужива-ния, обеспечение телефонных разговоров на телефонной стан-ции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а опера-ции обслуживания выполняются кем-либо или чем-либо, назы-ваемыми каналами (узлами) обслуживания.

Заявки в силу массовости поступления на обслуживание об-разуют потоки, которые до выполнения операций обслужива-ния называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки об-служивания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока за-явок, очереди, каналов обслуживания и выходящего потока за-явок образует простейшую систему массового обслуживания — СМО.

Одним из параметров входного потока заявок является интенсивность входящего потока заявок λ ;

К параметрам каналов обслуживания заявок относятся: интенсивность обслуживания μ , число каналов обслуживания n .

Параметрами очереди являются: максимальное число мест в очереди L max ; дисциплина очереди D («первым пришел - первым ушел» (FIFO); «последним пришел - первым ушел» (LIFO); с приоритетами; случайный выбор из очереди).

Процедура обслуживания считается завершенной, когда заяв-ка на обслуживание покидает систему. Продолжительность ин-тервала времени, требуемого для реализации процедуры обслу-живания, зависит в основном от характера запроса заявки на об-служивание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, например, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой — от формы организации об-служивания и обслуживающего персонала, что может значитель-но повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания.

Под обслуживанием заявок мы будем понимать процесс удовле-творения потребности. Обслуживание имеет различный характер по своей природе. Однако во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства.

В некоторых случаях обслуживание производится одним челове-ком (обслуживание покупателя одним продавцом), в некоторых — группой людей (обслуживание клиента в ресторане), а в некоторых случаях — техническими устройст-вами (продажа газированной воды, бутербродов автоматами).

Совокупность средств, которые осуществляют обслуживание за-явок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одина-ковые заявки, то каналы обслуживания называются однородны-ми.

Совокупность однородных каналов обслуживания называет-ся обслуживающей системой.

В систему массового обслуживания поступает большое коли-чество заявок в случайные моменты времени, длительность обслу-живания которых также является случайной величиной. Последо-вательное поступление заявок в систему обслуживания называет-ся входящим потоком заявок , а последовательность заявок, покидающих систему обслуживания, — выходящим потоком .

Если максимальная длина очереди L max = 0 , то СМО является системой без очередей.

Если L max = N 0 , где N 0 >0 - некоторое положительное число, то СМО является системой с ограниченной очередью.

Если L max → ∞, то СМО является системой с бесконечной очередью.

Случайный характер распределения длительности выполне-ния операций обслуживания, наряду со случайным характером поступления требований на обслуживание, приводит к тому, что в каналах обслуживания протекает случайный процесс, который может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания .

Заметим, что заявки, поступающие в систему обслуживания, могут покинуть ее и будучи не обслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи не обслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением про-цессов, связанных с массовым обслуживанием, разработкой ме-тодов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслужи-вания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания тре-бование может быть обслужено любым свободным каналом.

Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслужи-вания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществля-ется последовательно несколькими каналами обслуживания .

При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер , обслуживание заявки одним каналом называется фазой обслуживания . Например, если в магазине са-мообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли челове-ка. Под качеством функционирования системы в теории массо-вого обслуживания понимают не то, насколько хорошо выполне-но обслуживание, а то, насколько полно загружена система об-служивания, не простаивают ли каналы обслуживания, не образуется ли очередь .

Работу системы обслуживания характеризуют такие показате-ли, как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в ко-нечном итоге удовлетворение качеством обслуживания.

Чтобы улучшить качество функционирования системы об-служивания, необходимо определить, каким образом распреде-лить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как распо-ложить или сгруппировать каналы обслуживания или обслужива-ющие аппараты для улучшения показателей. Для решения перечисленных задач существует эффек-тивный метод моделирования, включающий и объединяющий достижения разных наук, в том числе математики.

Потоки событий.

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий — поступле-ния заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты вре-мени, формирует так называемый поток событий .

Примерами таких потоков являются потоки различной природы — потоки товаров, денег, документов; транспортные потоки; потоки клиентов, покупателей; потоки телефонных звонков, переговоров и др. По-ведение системы обычно определяется не одним, а сразу не-сколькими потоками событий. Например, обслуживание поку-пателей в магазине определяется потоком покупателей и пото-ком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является веро-ятностное распределение времени между соседними события-ми. Существуют различные потоки, которые отличаются свои-ми характеристиками.

Поток событий называется регулярным , если в нем события следуют одно за другим через заранее заданные и строго опреде-ленные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегу-лярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зави-сит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени.

То есть стационарным называется поток , для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим λ), не меняется во времени. Таким образом, вероятность поступления в систему определен-ного количества требований в течение заданного промежутка времени?t зависит от его величины и не зависит от начала его отсчета на оси времени.

Стационарность потока означает независимость от времени его вероятностных характеристик; в частности, интенсивность тако-го потока есть среднее число событий в единицу времени и оста-ется величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за промежуток вре-мени от t до t+?t.

Например, если на ткацком станке в данный момент произошел обрыв нити, и он устранен ткачихой, то это не оп-ределяет, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на веро-ятность возникновения обрыва на других станках.

Поток событий называется потоком без последствия , если число событий, попадающих на один из произвольно выбран-ных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой.

В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждо-го из них, не связаны с аналогичными причинами для других по-купателей.

Поток событий называется ординарным , если вероятность по-падания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попа-дания только одного события.

Другими словами, ординарность потока означает практическую невозмож-ность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя сразу несколько станков. В ординарном потоке события происходят поодиночке, а не по два (или более) сразу.

Если поток одновременно обладает свойствами стационарнос-ти, ординарности и отсутствием последствия , то такой поток назы-вается простейшим (или пуассоновским) потоком событий .

Мате-матическое описание воздействия такого потока на системы ока-зывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Методы и модели, применяющиеся в теории массового обслуживания (ТМО), можно условно разделить на АНАЛИТИЧЕСКИЕ и ИМИТАЦИОННЫЕ.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некото-рые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Имитационные методы основаны на моделировании процес-сов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения та-ких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность по-ступления за время t ровно k требований задается формулой:

Важная характеристика СМО — время обслуживания требований в системе.

Время обслуживания одного требования является, как правило, случайной величиной и, следователь-но, может быть описано законом распределения.

Наибольшее распространение в теории и особенно в практических прило-жениях получил экспоненциальный закон распределения времени обслуживания . Функция распределения для этого закона имеет вид:

F(t) = 1 - e - μ t , (2)

т.е. вероятность того, что время обслуживания не превосхо-дит некоторой величины t, определяется формулой (2), где μ — параметр экспоненциального закона распределения времени обслуживания требований в системе. То есть μ - это величина, обратная среднему времени обслуживания ? o6 . :

μ = 1/ ? o6 . (3)

Кроме понятия простейшего потока событий часто приходит-ся пользоваться понятиями потоков других типов.

Поток собы-тий называется потоком Пальма , когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тn являются независимыми, одинаково распределенными, слу-чайными величинами, но в отличие от простейшего потока необязательно распределенными по показательному закону.

Про-стейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так назы-ваемый поток Эрланга . Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего пото-ка. Например, условившись учитывать только каждое второе со-бытие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д. Можно полу-чить потоки Эрланга любого k-го порядка. Очевидно, простей-ший поток есть поток Эрланга первого порядка.

КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

Любое исследование системы массового обслуживания (СМО) начи-нается с изучения того, что необходимо обслуживать, следова-тельно, с изучения входящего потока заявок и его характеристик.

1. В зависимости от условий ожидания начала обслуживания различают:

СМО с потерями (отказами),

СМО с ожиданием.

В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и теряются. Классическим примером системы с отказами явля-ется телефонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и теряется.

В СМО с ожиданием требование, застав все обслуживаю-щие каналы занятыми, становится в очередь и ожидает, пока не освободится один из обслуживающих каналов.

СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди .

СМО, допускающие очередь , но с ограниченным сроком пребывания каждого требования в ней, называются систе-мами с ограниченным временем ожидания.

2. По числу каналов обслуживания СМО делятся на

- одноканальные ;

- многоканальные .

3. По месту нахождения источника требований

СМО делятся на:

- разомкнутые , когда источник требования находится вне системы;

- замкнутые , когда источник находится в самой системе.

Примером разомкнутой системы может служить мастерская по обслуживанию и ремонту бытовой техники. Здесь неисправные устройства — это источник требований на их обслуживание, находятся вне самой системы, число требований можно считать неограни-ченным.

К замкнутым СМО относится, например, станочный участок, в котором станки являются источником неисправностей, и, следовательно, источником требований на их обслу-живание , например, бригадой наладчиков.

Возможны и другие признаки классификации СМО, на-пример, по дисциплине обслуживания , однофазные и многофазные СМО и др.

3. МОДЕЛИ СМО. ПОКАЗАТЕЛИ КАЧЕСТВА ФУНКЦИОНИРОВАНИЯ СМО.

Рассмотрим аналитические модели наиболее распростра-ненных СМО с ожиданием, т.е. таких СМО, в которых требо-вания, поступившие в момент, когда все обслуживающие ка-налы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ СОСТОИТ В СЛЕДУЮЩЕМ.

Система имеет n обслуживающих каналов , каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пуассоновский) поток требований с параметром λ .

Если в момент поступления оче-редного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

Время обслуживания каждого требования t об. — случайная величина, которая подчиняется экспоненциальному за-кону распределения с параметром μ .

СМО С ОЖИДАНИЕМ МОЖНО РАЗБИТЬ НА ДВЕ БОЛЬШИЕ ГРУППЫ: ЗАМКНУТЫЕ И РАЗОМКНУТЫЕ.

К замкнутым относятся системы, в которых поступающий поток требований возникает в самой системе и ограничен .

Например, мастер, задачей кото-рого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится потенциальным источником требований на накладку. В по-добных системах общее число циркулирующих требования конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований , то системы называются разомкнутыми.

Приме-рами подобных систем могут служить магазины, кассы вокза-лов, портов и др. Для этих систем поступающий поток требо-ваний можно считать неограниченным.

Отмеченные особенности функционирования систем этих двух видов накладывают определенные условия на исполь-зуемый математический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (так называемые фор-мулы Эрланга ).

  1. 1. РАЗОМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ.

Рассмотрим алгоритмы расчета показателей качества функционирования разомкнутой СМО с ожиданием.

При изучении таких систем рассчитывают различные по-казатели эффективности обслуживающей системы. В каче-стве основных показателей могут быть вероятность того, что все каналы свободны или заняты, математическое ожидание длины очереди (средняя длина очереди), коэффициенты за-нятости и простоя каналов обслуживания и др.

Введем в рассмотрение параметр α = λ/μ . Заметим, что если выполняется неравенство α / n < 1, то очередь не может расти безгранично.

Это условие имеет следующий смысл: λ — среднее число требо-ваний, поступающих за единицу времени , 1/μ — среднее время обслуживания одним каналом одного требования, тогда α = λ (1/ μ) — среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступаю-щие требования. Тогда μ - среднее число требований, обслуживаемых одним каналом за единицу времени.

Поэтому условие: α / n < 1, означает, что чис-ло обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования .

ВАЖНЕЙ-ШИЕ ХАРАКТЕРИСТИКИ РАБОТЫ СМО (для разомкнутой системы массового обслуживания с ожиданием ):

1. Вероятность P 0 того, что все обслуживающие каналы сво-бодны:

2. Вероятность P k того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находя-щихся на обслуживании, не превосходит числа обслуживающих аппаратов, то есть при 1 k n :

3. Вероятность P k того, что в системе находится k требований в случае, когда их число больше числа обслуживающих каналов, то есть при k > n :

4. Вероятность Pn того, что все обслуживающие каналы заняты:

5. Среднее время ожидания требованием начала обслу-живания в системе:

6. Средняя длина очереди:

7. Среднее число свободных от обслуживания каналов:

8. Коэффициент простоя каналов:

9. Среднее число занятых обслуживанием каналов:

10. Коэффициент загрузки каналов

Фирма по обслуживанию и ремонту бытовой техники и электроники имеет филиал: мастерскую по ремонту мобильных телефонов, в которой работает n = 5 опытных мастеров. В среднем в течение рабочего дня от населения поступает в ремонт λ =10 мобильных телефонов. Общее число мобильных телефонов, находящихся в эксплуатации у населения, очень велико, и они независимо друг от друга в различное время выходят из строя. Поэтому есть основания считать, что поток заявок на ремонт ап-паратуры является случайным, пуассоновским. В свою оче-редь каждый мобильный телефон в зависимости от характера неисправ-ности также требует различного случайного времени на ре-монт. Время на проведение ремонта зависит во многом от серьезности полученного повреждения, квалификации мас-тера и множества других причин. Пусть статистика показа-ла, что время ремонта подчиняется экспоненциальному за-кону; при этом в среднем в течение рабочего дня каждый из мастеров успевает отремонтировать μ = 2,5 мобильных телефона.

Требуется оценить работу филиала фирмы по ремонту -бытовой техники и электроники, рассчитав ряд основных характеристик данной СМО.

За единицу времени принимаем 1 рабочий день (7 часов).

1. Определим параметр

α = λ / μ = 10/ 2,5 = 4.

Так как α < n = 5, то можно сделать вывод: очередь не может расти безгранично.

2. Вероятность P 0 того, что все мастера свободны от ремонта аппаратуры, равна согласно (4):

P0 = (1 + 4 + 16/2 + 64/3! + 256/4! + 1024/5!(1- 4/5)) -1 = (77) -1 ≈ 0,013.

3. Вероятность P5 того, что все мастера заняты ремонтом, находим по формуле (7) (Pn при n=5):

P5 = P0 1024 /5! (1-4/5) = P0 256 /6 ≈ 0,554.

Это означает, что 55,4% времени мастера полностью за-гружены работой.

4. Среднее время обслуживания (ремонта) одного аппарата согласно формуле (3):

? o6. = 1/ μ = 7/2,5 = 2,8 ч./аппарат (важно: единица времени - 1 рабочий день, т. е. 7 часов).

5. В среднем время ожидания каждого неисправного мобильного телефона начала ремонта равно по формуле (8):

Ож. = Pn/(μ (n-α)) = 0,554 2,8/(5 - 4) =1,55 часа.

6. Очень важной характеристикой является средняя длина очереди, которая определяет необходимое место для хранения аппаратуры, требующей ремонта; находим ее по формуле (9):

Оч. = 4 P5/ (5-4) ≈ 2,2 моб. телефона.

7. Определим среднее число мастеров, свободных от ра-боты, по формуле (10):

Ñ0 = P0 (5 + 16 + 24+ 64/3 + 32/3) = P0 77 ≈ 1 мастер.

Таким образом, в среднем в течение рабочего дня ремонтом заняты четыре мастера из пяти.

  1. 2. ЗАМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ.

Перейдем к рассмотрению алгоритмов расчета характери-стик функционирования замкнутых СМО.

Поскольку система замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслуживания одновременно не может находиться больше m требований (m — число обслуживаемых объектов).

За критерий, характеризующий качество функциониро-вания рассматриваемой системы, выберем отношение средней длины очереди к наибольшему числу требований, находя-щихся одновременно в обслуживающей системе — коэффици-ент простоя обслуживаемого объекта .

В качестве другого критерия возьмем отношение среднего числа незанятых об-служивающих каналов к их общему числу — коэффициент простоя обслуживаемого канала .

Первый из названных критериев характеризует потери времени из-за ожидания начала обслуживания ; второй по-казывает полноту загрузки обслуживающей системы .

Очевидно, что очередь может возникнуть, лишь когда число каналов обслуживания меньше наибольшего числа требований, нахо-дящихся одновременно в обслуживающей системе (n < m).

Приведем последовательность расчетов характеристик замкнутых СМО и необходимые формулы.

ПАРАМЕТРЫ ЗАМКНУТЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

1. Определим параметр α = λ / μ — показатель загрузки системы , то есть математическое ожидание числа требований, поступающих в систему за время, равное средней длитель-ности обслуживания (1/μ = ?o6.).

2. Вероятность P k того, что занято k обслуживающих каналов при условии, что число требований, находящихся в системе, не превосходит числа обслуживающих каналов системы (то есть при m n ) :

3. Вероятность P k того, что в системе находится k требований для случая, когда их число больше числа обслуживающих каналов (то есть при k > n , при этом k m ):

4. Вероятность P 0 того, что все обслуживающие каналы сво-бодны, определим, используя очевидное условие:

Тогда величина P 0 будет равна:

5. Среднее число M оч. требований, ожидающих начала обслу-живания (средняя длина очереди):

Или с учетом формулы (15)

6. Коэффициент простоя обслуживаемого требования (объекта):

7. Среднее число M требований, находящихся в обслуживаю-щей системе, обслуживаемых и ожидающих обслуживания:

где для вычислений первой и второй суммы применяются формулы (14) и (15) соответственно.

8. Среднее число свободных обслуживающих каналов

где P k вычисляется по формуле (14).

9. Коэффициент простоя обслуживающего канала

Рассмотрим пример расчета характеристик замкнутой СМО.

Рабочий обслуживает группу автоматов, состоя-щую из 3 станков. Поток поступающих требований на обслу-живание станков является пуассоновским с параметром λ = 2 ст./ч.

Обслуживание одного станка занимает у рабочего в среднем 12 минут, а время обслуживания подчинено экспоненци-альному закону.

Тогда 1/μ = 0,2 ч./ст., т.е. μ = 5 ст./ч., Параметр α = λ/μ = 0,4.

Необходимо определить среднее число автоматов, ожи-дающих обслуживания, коэффициент простоя автомата, ко-эффициент простоя рабочего.

Обслуживающим каналом здесь является рабочий; так как станки обслуживает один рабочий, то n = 1 . Общее число требований не может пре-взойти числа станков, т.е. m = 3 .

Система может находиться в четырех различных состоя-ниях: 1) все станки работают; 2) один стоит и обслуживается рабочим, а два работают; 3) два стоят, один обслуживается, один ждет обслуживания; 4) три стоят, из них один обслу-живается, а два ждут очереди.

Для ответа на поставленные вопросы можно воспользо-ваться формулами (14) и (15).

P1 = P0 6 0,4/2 = 1,2 P0;

P2 = P0 6 0,4 0,4 = 0,96 P0;

P3 = P0 6 0,4 0,4 0,4= 0,384 P0;

Сведем вычисления в таблицу (рис. 1).

∑P k /P 0 = 3,5440

∑ (k-n)P k = 0,4875

∑k P k = 1,2053

Рис. 1. Вычисление характеристик замкнутой СМО.

В этой таблице первым вычисляется третий столбец, т.е. отношения P k /P 0 при k = 0,1,2,3.

Затем, суммируя величины по третьему столбцу и учитывая, что ∑ P k = 1, получаем 1/P 0 = 3,544. Откуда Р 0 ≈ 0,2822.

Умножая значения, стоящие в третьем столбце, на Р 0 , получаем в соответствующих строках значения четвертого столбца.

Величина Р 0 = 0,2822, рав-ная вероятности того, что все автоматы работают, может быть истолкована как вероятность того, что рабочий свобо-ден. Получается, что в рассматриваемом случае рабочий будет свободен более 1/4 всего рабочего времени. Однако это не оз-начает, что «очередь» станков, ожидающих обслуживания, всегда будет отсутствовать. Математическое ожидание числа автоматов, стоящих в очереди, равно

Суммируя значения, стоящие в пятом столбце таблицы, получим среднюю длину очереди M оч. = 0,4875. Следова-тельно, в среднем из трех станков 0,49 станка будет про-стаивать в ожидании, пока освободится рабочий.

Суммируя значения, стоящие в шестом столбце таблицы, получим математическое ожи-дание числа простаивающих станков (ремонтируемых и ожидающих ремонта): М = 1,2053. То есть в среднем 1,2 станка не будет выдавать продукцию.

Ко-эффициент простоя станка равен К пр.об. = M оч. /3 = 0,1625. То есть каждый станок простаивает примерно 0,16 часть рабо-чего времени в ожидании, пока рабочий освободится.

Коэффициент простоя рабочего в данном случае совпадает с P 0 , так как n = 1 (все обслуживающие каналы свободны), поэтому

К пр.кан. = N 0 /n = 0,2822.

Абчук В.А. Экономико-математические методы: Элементарная математика и логика. Методы исследования операций. - СПб.: Союз, 1999. - 320.

Елтаренко Е.А. Исследование операций (системы массового обслуживания, теория игр, модели управления запасами). Учебное пособие. - М.: МИФИ, 2007. - С. 157.

Фомин Г. П. Математические методы и модели в коммерческой дея-тельности: Учебник. — 2-е изд., перераб. и доп. — М.: Финан-сы и статистика, 2005. — 616 с: ил.

Шелобаев С. И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. — М.: ЮНИТИ- ДАНА, 2001. - 367 с.

Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. — М.: ЮНИТИ, 1999. - 391 с.

Курсовая работа

«Имитационное моделирование системы массового обслуживания»

по курсу «Исследование операций»

Введение

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО). Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок. В качестве показателей эффективности СМО используются:

– Абсолютная пропускная способность системы (А

Q

– вероятность отказа обслуживания заявки ();

k );

– среднее число заявок в очереди ();

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.

1. Основные характеристики CМОи показатели их эффективности

1.1 Понятие марковского случайного процесса

Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

При анализе процессов работы СМО удобно пользоваться геометрической схемой – графом состояний . Обычно состояния системы изображаются прямоугольниками, а возможные переходы из состояния в состояние – стрелками. Пример графа состояний приведен на рис. 1.


Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется ординарным, если вероятность попадания на малый участок времени двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и число событий, попадающих на одно из них, не зависит от числа событий, попадающих на другие.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия.

1.2 Уравнения Колмогорова

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:

Получается система из ( n +1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А ), т.е. среднее число заявок, обслуживаемых в единицу времени;

– относительная пропускная способность (Q ), т.е. средняя доля поступивших заявок, обслуживаемых системой;

– вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

– среднее число занятых каналов (k );

– среднее число заявок в СМО ();

– среднее время пребывания заявки в системе ();

– среднее число заявок в очереди () – длина очереди;

– среднее число заявок в системе ();

– среднее время пребывания заявки в очереди ();

– среднее время пребывания заявки в системе ()

– степень загрузки канала (), т.е. вероятность того, что канал занят;

– среднее число заявок, обслуживаемых в единицу времени;

– среднее время ожидания обслуживания;

– вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.


Таблица 1.

Показатели

Одноканальная СМО с

ограниченной очередью

Многоканальная СМО с

ограниченной очередью

Финальные

вероятности

Вероятность

Абсолютная пропускная

способность

Относительная пропускная

способность

Среднее число заявок в

Среднее число заявок под

обслуживанием

Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины с любой непрерывной и монотонно возрастающей функцией распределения достаточно уметь моделировать случайную величину , равномерно распределенную на отрезке . Получив реализацию случайной величины , можно найти соответствующую ей реализацию случайной величины , так как они связаны равенством

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром , где – интенсивность потока обслуживания. Тогда функция распределения времени обслуживания имеет вид

Пусть - реализация случайной величины , равномерно распределенной на отрезке , а – соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.5.1)

1.6 Построение имитационных моделей

Первый этап создания любой имитационной модели – этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений , показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра определяются следующим образом:


, , т.е. , где

Исправленная дисперсия, ,

N – число прогонов программы, – надежность, .

2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим двухканальную систему массового обслуживания (n = 2) с ограниченной очередью равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Данная система имеет 7 состояний, обозначим их:

S 0 – система свободная, нет заявок;

S 1 – 1 заявка на обслуживании, очередь пуста;

S 2 – 2 заявки на обслуживании, очередь пуста;

S 3 – 2 заявки на обслуживании, 1 заявка в очереди;

S 4 – 2 заявки на обслуживании, 2 заявки в очереди;

S 5 – 2 заявки на обслуживании, 3 заявки в очереди;

S 6 – 2 заявки на обслуживании, 4 заявки в очереди;

Вероятности прихода системы в состояния S 0 , S 1 , S 2 , …, S 6 соответственно равны Р 0 , Р 1 , Р 2 , …, Р 6 .

Граф состояний системы массового обслуживания представляет собой схему гибели и размножения. Все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим.

Рис. 3. Граф состояний двухканальной СМО


Для построенного графа запишем уравнения Колмогорова:

Чтобы решить данную систему зададим начальные условия:

Систему уравнений Колмогорова (систему дифференциальных уравнений) решим численным методом Эйлера с помощью программного пакета Maple 11 (см. Приложение 1).

Метод Эйлера


где- в нашем случае, это правые части уравнений Колмогорова, n=6.

Выберем шаг по времени . Предположим , где Т – это время, за которое система выходит на стационарный режим. Отсюда получаем число шагов . Последовательно N раз вычисляя по формуле (1) получим зависимости вероятностей состояний системы от времени, приведенной на рис. 4.

Значения вероятностей СМО при равны:


Рис. 4. Зависимости вероятностей состояний системы от времени

P 0
P 5
P 4
P 3
P 2
P 1
2.2 Финальные вероятности системы

При достаточно большом времени протекания процессов в системе () могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов можно перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Т.к. в стационарном состоянии производные по времени равны 0, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания правых частей 0. Запишем уравнения для финальных вероятностей для нашей СМО.


Решим данную систему линейных уравнений с помощью программного пакета Maple 11 (см. Приложение 1).

Получим финальные вероятности системы:

Сравнение вероятностей, полученных из системы уравнений Колмогорова при , с финальными вероятностями показывает, что ошибки равны:

Т.е. достаточно малы. Это подтверждает правильность полученных результатов.

2.3 Расчет показатели эффективности системы по финальным вероятностям

Найдем показатели эффективности системы массового обслуживания.

Сначала вычислим приведенную интенсивность потока заявок:

1) Вероятность отказав обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди), это соответствует состоянию системы S 6 . Т.к. вероятность прихода системы в состояние S 6 равна Р 6 , то

4) Средняя длина очереди, т.е. среднее число заявок в очереди, равна сумме произведений числа заявок в очереди на вероятность соответствующего состояния.

5) Среднее время пребывания заявки в очередиопределяется формулой Литтла:

3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

Рассмотрим двухканальную систему массового обслуживания (n = 2) с максимальной длиной очереди равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Для имитации СМО воспользуемся одним из методов статистического моделирования – имитационным моделированием. Будем использовать пошаговый подход. Суть этого подхода в том, что состояния системы рассматриваются в последующие моменты времени, шаг между которыми является достаточно малым, чтобы за его время произошло не более одного события.

Выберем шаг по времени (). Он должен быть много меньше среднего времени поступления заявки () и среднего времени ее обслуживания (), т.е.

Где (3.1.1)

Исходя из условия (3.1.1) определим шаг по времени .

Время поступления заявки в СМО и время ее обслуживания являются случайными величинами. Поэтому, при имитационном моделировании СМО их вычисление производится с помощью случайных чисел.

Рассмотрим поступление заявки в СМО. Вероятность того, что на интервале в СМО поступит заявка, равна: . Сгенерируем случайное число , и, если , то будем считать, что заявка на данном шаге в систему поступила, если , то не поступила.

В программе это осуществляет isRequested () . Интервал времени примем постоянным и равным 0,0001, тогда отношение будет равно 10000. Если заявка поступила, то она принимает значение «истина», в противном случае значение «ложь».

bool isRequested()

double r = R. NextDouble();

if (r < (timeStep * lambda))

Рассмотрим теперь обслуживание заявки в СМО. Время обслуживания заявки в системе определяется выражением , где – случайное число. В программе время обслуживания определяется с помощью функции GetServiceTime () .

double GetServiceTime()

double r = R. NextDouble();

return (-1/mu*Math. Log (1-r, Math.E));

Алгоритм метода имитационного моделирования можно сформулировать следующим образом. Время работы СМО (Т ) разбивается на шаги по времени dt , на каждом из них выполняется ряд действий. Вначале определяются состояния системы (занятость каналов, длина очереди), затем, с помощью функции isRequested () , определяется, поступила ли на данном шаге заявка или нет.

Если поступила, и, при этом имеются свободные каналы, то с помощью функции GetServiceTime () генерируем время обработки заявки и ставим ее на обслуживание. Если все каналы заняты, а длина очереди меньше 4, то помещаем заявку в очередь, если же длина очереди равна 4, то заявке будет отказано в обслуживании.

В случае, когда на данном шаге заявка не поступала, а канал обслуживания освободился, проверяем, есть ли очередь. Если есть, то из очереди заявку ставим на обслуживание в свободный канал. После проделанных операций время обслуживания для занятых каналов уменьшаем на величину шага dt .

По истечении времени Т , т.е., после моделирования работы СМО, вычисляются показатели эффективности работы системы и результаты выводятся на экран.

3.2 Блок-схема программы

Блок-схема программы, реализующей описанный алгоритм, приведена на рис. 5.

Рис. 5. Блок-схема программы

Распишем некоторые блоки более подробно.

Блок 1. Задание начальных значений параметров.

Random R; // Генератор случайных чисел

public uint maxQueueLength; // Максимальная длина очереди

public uint channelCount; // Число каналов в системе

public double lambda; // Интенсивность потока поступления заявок

public double mu; // Интенсивность потока обслуживания заявок

public double timeStep; // Шагповремени

public double timeOfFinishProcessingReq; // Время окончания обслуживания заявки во всех каналах

public double timeInQueue; // Время пребывания СМО в состояниях с очередью

public double processingTime; // Времяработысистемы

public double totalProcessingTime; // Суммарноевремяобслуживаниязаявок

public uint requestEntryCount; // Числопоступившихзаявок

public uint declinedRequestCount; // Числоотказанныхзаявок

public uint acceptedRequestCount; // Числообслуженныхзаявок

uint queueLength; // Длина очереди //

Тип, описывающий состояния СМО

enum SysCondition {S0, S1, S2, S3, S4, S5, S6};

SysCondition currentSystemCondition; // Текущее состояние системы

Задание состояний системы. Выделим у данной 2-х канальной системы 7 различных состояний: S 0 , S 1 . S 6 . СМО находится в состоянии S 0 , когда система свободна; S 1 – хотя бы один канал свободен; в состоянии S 2 , когда все каналы заняты, и есть место в очереди; в состоянии S 6 – все каналы заняты, и очередь достигла максимальной длины (queueLength = 4).

Определяем текущее состояние системы с помощью функции GetCondition()

SysCondition GetCondition()

SysCondition p_currentCondit = SysCondition.S0;

int busyChannelCount = 0;

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq[i] > 0)

busyChannelCount++;

p_currentCondit += k * (i + 1);

if (busyChannelCount > 1)

{p_currentCondit ++;}

return p_currentCondit + (int) QueueLength;

Изменение времени пребывания СМО в состояниях с длиной очереди 1, 2,3,4. Это реализуется следующим программным кодом:

if (queueLength > 0)

timeInQueue += timeStep;

if (queueLength > 1)

{timeInQueue += timeStep;}

Присутствует такая операция, как помещение заявки на обслуживание в свободный канал. Просматриваются, начиная с первого, все каналы, когда выполняется условие timeOfFinishProcessingReq [ i ] <= 0 (канал свободен), в него подается заявка, т.е. генерируется время окончания обслуживания заявки.

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] <= 0)

timeOfFinishProcessingReq [i] = GetServiceTime();

totalProcessingTime+= timeOfFinishProcessingReq [i];

Обслуживаниезаявоквканалахмоделируетсякодом:

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] > 0)

timeOfFinishProcessingReq [i] -= timeStep;

Алгоритм метода имитационного моделирования реализован на языке программирования C#.

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

Наиболее важными являются такие показатели, как:

1) Вероятность отказа в обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди). Для нахождения вероятности отказа разделим время пребывания СМО в состоянии с очередью 4 на общее время работы системы.

2) Относительная пропускная способность – это средняя доля поступивших заявок, обслуживаемых системой.

3) Абсолютная пропускная способность– это среднее число заявок, обслуживаемых в единицу времени.


4) Длина очереди, т.е. среднее число заявок в очереди. Длина очереди равна сумме произведений числа человек в очереди на вероятность соответствующего состояния. Вероятности состояний найдем как отношение времени нахождения СМО в этом состоянии к общему времени работы системы.

5) Среднее время пребывания заявки в очереди определяется формулой Литтла

6) Среднее число занятых каналовопределяется следующим образом:

7) Процент заявок, которым было отказано в обслуживании, находится по формуле

8) Процент обслуженных заявок находится по формуле


3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Т.к. показатели эффективности получаются в результате моделирования СМО в течение конечного времени, они содержат случайную компоненту. Поэтому, для получения более надежных результатов нужно провести их статистическую обработку. С этой целью оценим доверительный интервал для них по результатам 20 прогонов программы.

Величина попадает в доверительный интервал, если выполняется неравенство

, где

математическое ожидание (среднее значение), находится по формуле

Исправленная дисперсия,

,

N =20 – число прогонов,

– надежность. При и N =20 .

Результат работы программы представлен на рис. 6.


Рис. 6. Вид программы

Для удобства сравнения результатов, полученных различными методами моделирования, представим их в виде таблицы.

Таблица 2.

Показатели

эффективности СМО

Результаты

аналитического

моделирования

Результаты

имитационного моделирования (послед. шаг)

Результаты имитационного моделирования

Нижняя граница

доверительного

интервала

Верхняя граница

доверительного

интервала

Вероятность отказа 0,174698253017626

0,158495148639101

0,246483801571923
Относительная пропускная способность 0,825301746982374 0,753516198428077 0,841504851360899
Абсолютная пропускная способность 3,96144838551539 3,61687775245477 4,03922328653232
Средняя длина очереди 1,68655313447018 1,62655862750852 2,10148609204869
Среднее время пребывания заявки в очереди 0,4242558575 0,351365236347954 0,338866380730942 0,437809602510145
Среднее число занятых каналов 1,9807241927577 1,80843887622738 2,01961164326616

Из табл. 2 видно, что результаты, полученные при аналитическом моделировании СМО, попадают в доверительный интервал, полученный по результатам имитационного моделирования. Т.е., результаты, полученные разными методами, согласуются.

Заключение

В данной работе рассмотрены основные методы моделирования СМО и расчета показателей их эффективности.

Проведено моделирование двухканальной СМО с максимальной длиной очереди равной 4 с помощью уравнений Колмогорова, а также, найдены финальные вероятности состояний системы. Рассчитаны показатели ее эффективности.

Проведено имитационное моделирование работы такой СМО. На языке программирования C# составлена программа, имитирующая ее работу. Проведена серия расчетов, по результатам которых найдены значения показателей эффективности системы и выполнена их статистическая обработка.

Полученные при имитационном моделировании результаты согласуются с результатами аналитического моделирования.

Литература

1. Вентцель Е.С. Исследование операций. – М.: Дрофа, 2004. – 208 с.

2. Волков И.К., Загоруйко Е.А. Исследование операций. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2002. – 435 с.

3. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2000. – 447 с.

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 1979. – 400 с.

5. Ивницкий В.Л. Теория сетей массового обслуживания. – М.: Физматлит, 2004. – 772 с.

6. Исследование операций в экономике/ под ред. Н.Ш. Кремера. – М.: Юнити, 2004. – 407 с.

7. Таха Х.А. Введение в исследование операций. – М.: ИД «Вильямс», 2005. – 902 с.

8. Харин Ю.С., Малюгин В.И., Кирлица В.П. и др. Основы имитационного и статистического моделирования. – Минск: Дизайн ПРО, 1997. – 288 с.

23 октября 2013 в 14:22

Squeak: Моделирование систем массового обслуживания

  • Программирование ,
  • ООП ,
  • Параллельное программирование

На Хабре крайне мало информации о таком языке программирования как Squeak . Я попытаюсь рассказать о нем в контексте моделирования систем массового обслуживания . Покажу как написать простой класс, расскажу его структуру и использую его в программе, которая будет обслуживать заявки посредством нескольких каналов.

Пару слов о Squeak

Squeak это открытая, кросс-платформенная реализация языка программирования Smalltalk-80 c динамической типизацией и сборщиком мусора. Интерфейс довольно специфический, но вполне удобный для отладки и анализа. Squeak полностью отвечает концепции ООП. Все состоит из объектов, даже конструкции if-then-else, for, while реализованы с их помощью. Весь синтаксис сводится к посылке объекту сообщения в виде:
<объект> <сообщение>
Любой метод всегда возвращает объект и ему можно направить новое сообщение.
Squeak часто используется для моделирования процессов, но может использоваться и как средство для создания мультимедийных приложений и разнообразных образовательных платформ.

Системы массового обслуживания

Системы массового обслуживания (СМО) содержат один или несколько каналов которые обрабатывают заявки, поступающие от нескольких источников. Время на обслуживание каждой заявки может быть фиксированным или произвольным, как и интервалы между их поступлением. Это может быть телефонная станция, прачечная, кассиры в магазине, машинописное бюро и пр. Выглядит это примерно так:


СМО включает несколько источников которые поступают в общую очередь и направляются на обслуживание по мере освобождения каналов обработки. В зависимости от конкретных особенностей реальных систем модель может содержать различное число источников заявок и каналов обслуживания и иметь различные ограничения на длину очереди и связанную с ней возможность потери заявок (отказов).

При моделировании СМО обычно решаются задачи оценки средней и максимальной длины очереди, частоты отказов в обслуживании, средней загрузки каналов, определение их числа. В зависимости от задачи, в модель включаются программные блоки сбора, накопления и обработки необходимых статистических данных о поведении процессов. Наиболее часто используемыми моделями потоков событий при анализе СМО являются регулярные и пуассоновские. Регулярные характеризуются одинаковым временем между наступлениями событий, а пуассоновские - случайным.

Немного математики

Для пуассоновского потока число событий X , попадающих в интервал длины τ (тау), примыкающий к точке t , распределено по закону Пуассона:
где a (t, τ) - среднее число событий, наступающих на интервале времени τ .
Среднее число событий, наступающих в единицу времени, равно λ(t) . Следовательно, среднее число событий на интервале времени τ , примыкающему к моменту времени t , будет равно:


Время T между двумя событиями при λ(t) = const = λ распределено по закону:
Плотность распределения случайной величины T имеет вид:
Для получения псевдослучайных пуассоновских последовательностей интервалов времени t i решают уравнение:
где r i - равномерно распределенное на интервале случайное число.
В нашем случае это дает выражение:


По генерации случайных чисел можно писать целые тома. Здесь же, для генерации равномерно распределенных на интервале целых чисел используем следующий алгоритм:
где R i - очередное случайное целое число;
Р - некоторое большое простое число (например 2311);
Q - целое число - верхняя граница интервала, например, 2 21 = 2097152;
rem - операция получения остатка от деления целых чисел.

Начальное значение R 0 обычно задают произвольно, например, используя показания таймера:
Time totalSeconds
Для получения равномерно распределенных на интервале чисел воспользуемся оператором языка:

Класс Rand

Для получения равномерно распределенных на интервале случайных чисел создаем класс - генератор вещественных чисел:

Float variableWordSubclass: #Rand "имя класса" instanceVariableNames: "" "переменные экземпляра" classVariableNames: "R" "переменные класса" poolDictionaries: "" "общие словари" category: "Sample" "имя категории"
Методы:

"Инициализация" init R:= Time totalSeconds.next "Следующее псевдослучайное число" next R:= (R * 2311 + 1) rem: 2097152. ^(R/2097152) asFloat
Для установки начального состояния датчика посылаем сообщение Rand init .
Для получения очередного случайного числа посылаем Rand next .

Программа обработки заявок

Итак, в качестве простенького примера сделаем следующее. Пусть нам необходимо промоделировать обслуживание регулярного потока заявок от одного источника со случайным интервалом времени между заявками. Имеется два канала различной производительности, позволяющих обслуживать заявки за 2 и 7 единиц времени соответственно. Необходимо зарегистрировать число заявок, обслуженных каждым каналом на интервале 100 единиц времени.

Код на Squeak

"Объявление временных переменных" | proc1 proc2 t1 t2 s1 s2 sysPriority queue continue r | "Начальные установки переменных" Rand init. SysTime:= 0. s1:= 0. s2:= 0. t1:= -1. t2:= -1. continue:= true. sysPriority:= Processor activeProcess priority. "Текущий приоритет" queue:= Semaphore new. "Модель очереди заявок" "Создание процесса - модели канала 1" (Process forContext: [ proc1:= Processor activeProcess. whileTrue: "Цикл обслуживания" [ queue wait. "Ждать заявку" t1:= SysTime + 2. "Следующее время активизации" s1:= s1 + 1. proc1 suspend. "Приостановить процесс в ожидании окончания обслуживания" ]. proc1:= nil. "Удалить ссылку на процесс 1" ] priority: (sysPriority + 1)) resume. "Новый приоритет больше фонового" "Создание процесса - модели канала 2" (Process forContext: [ proc2:= Processor activeProcess.. whileTrue: [ queue wait. t2:= SysTime + 7. s2:= s2 + 1. proc2 suspend. ]. proc2:= nil. ] priority: (sysPriority + 1)) resume. "Продолжение описания главного процесса и модели источника" whileTrue: [ r:= (Rand next * 10) rounded. (r = 0) ifTrue: . ((SysTime rem: r) = 0) ifTrue: . "Послать заявку" "Коммутатор процессов обслуживания" (t1 = SysTime) ifTrue: . (t2 = SysTime) ifTrue: . SysTime:= SysTime + 1. "Тикает модельное время" ]. "Показать состояние счетчика заявок" PopUpMenu inform: "proc1: ",(s1 printString),", proc2: ",(s2 printString). continue:= false.


При запуске видим, что процесс 1 успел обработать 31 заявку, а процесс 2 только 11:

За последние десятилетия в самых разных областях народного хозяйства возникла необходимость решения вероятностных задач, связанных с работой систем массового обслуживания. Примерами таких систем служат телефонные станции, ремонтные мастерские, торговые предприятия, билетные кассы и т.д. работа любой системы массового обслуживания состоит в обслуживании поступающего в нее потока требований (вызовы абонентов, при ход покупателей в магазин, требования на выполнение работы в мастерской и т. д.).
Математическая дисциплина, изучающая модели реальных систем массового обслуживания, получила название теории массового обслуживания. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что требование будет обслужено; математического ожидания числа обслуженных требований и т. д.) от входных показателей (количество приборов в системе, параметров входящего потока требований и т. д.) установить такие зависимости в формульном виде можно только для простых систем массового обслуживания. Изучение же реальных систем проводится путем имитации, или моделирования их работы на ЭВМ с привлечением метода статистических испытаний.
Система массового обслуживания считается заданной, если определены:
1) входящий поток требований, или, иначе говоря, закон распределения, характеризующий моменты времени поступления требований в систему. Первопричину требований называют источником. В дальнейшем условимся считать, что источник располагает неограниченным числом требований и что требования однородны, т. е. различаются только моментами появления в системе;
2) система обслуживания, состоящая из накопителя и узла обслуживания. Последний представляет собой одно или несколько обслуживающих устройств, которые в дальнейшем будем называть приборами. Каждое требование должно поступить на один из приборов, чтобы пройти обслуживание. Может оказаться, что требованиям придется ожидать, пока приборы освободятся. В этом случае требования находятся в накопителе, образуя одну или несколько очередей. Положим, что переход требования из накопителя в узел обслуживания происходит мгновенно;
3) время обслуживания требования каждым прибором, которое является случайной величиной и характеризуется некоторым законом распределения;
4) дисциплина ожидания, т. е. совокупность правил, регламентирующих количество требований, находящихся в один и тот же момент времени в системе. Система, в которой поступившее требование получает отказ, когда все приборы заняты, называется системой без ожидания. Если требование, заставшее все приборы занятыми, становится в очередь и ожидает до тех пор,
пока освободиться один из приборов, то такая система называется чистой системой с ожиданием. Система, в которой требование, заставшее все приборы занятыми, становится в очередь только в том случае, когда число требований, находящихся в системе, не превышает определенного уровня (в противном случае происходит потеря требования), называется смешанной системой обслуживания;
5) дисциплина обслуживания, т. е. совокупность правил, в соответствии с которыми требование выбирается из очереди для обслуживания. Наиболее часто на практике используются следующие правила:
- заявки принимаются к обслуживанию в порядке очереди;
- заявки принимаются к обслуживанию по минимальному времени получения отказа;
- заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями;
6) дисциплина очереди, т.е. совокупность правил, в соответствии с которыми требование отдает предпочтение той или иной очереди (если их не сколько) и располагается в выбранной очереди. Например, поступившее требование может занять место в самой короткой очереди; в этой очереди оно может расположиться последним (такая очередь называется упорядоченной), а может пойти на обслуживание вне очереди. Возможны и другие варианты.

Имитационное моделирование систем массового обслуживания

Модель - это любой образ, аналог, мысленный или установленный, изображение, описание, схема, чертеж, и т. п. какого либо объекта, процесса или явления, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.
Моделирование - это исследование какого-либо объекта или системы объектов путем построения и изучения их моделей. А также - это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.
Модель является средством для изучения сложных систем.
В общем случае сложная система представляется как многоуровневая конструкция из взаимодействующих элементов, объединяемых в подсистемы различных уровней. К сложным системам, в т.ч., относятся информационные системы. Проектирование таких сложных систем осуществляется в два этапа.

1 Внешнее проектирование

На этом этапе проводят выбор структуры системы, основных ее эле ментов, организация взаимодействия между элементами, учет воздействия внешней среды, оценка показателей эффективности системы.

2 Внутреннее проектирование - проектирование отдельных элементов
системы

Типичным методом исследования сложных систем на первом этапе является моделирование их на ЭВМ.
В результате моделирования получаются зависимости, характеризующие влияние структуры и параметров системы на ее эффективность, надежность и другие свойства. Эти зависимости используются для получения оптимальной структуры и параметров системы.
Модель, сформулированная на языке математики с использованием математических методов называется математической моделью.
Для имитационного моделирования характерно воспроизведение явлений, описываемых математической моделью, с сохранением их логической структуры, последовательности чередования во времени. Для оценки искомых величин может быть использована любая подходящая информация, циркулирующая в модели, если только она доступна регистрации и последующей обработке.
Искомые величины при исследовании процессов методом имитационного моделирования обычно определяют как средние значения по данным большого числа реализаций процесса. Если число реализаций N, используемых для оценки искомых величин, достаточно велико, то в силу закона больших чисел получаемые оценки приобретают статистическую устойчивость и с достаточной для практики точностью могут быть приняты в качестве приближенных значений искомых величин.
Сущность метода имитационного моделирования применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы,
при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также моделировать процессы функционирования обслуживающих систем. Эти алгоритмы используются для много кратного воспроизведения реализации случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состоянии процесса подвергается статистической обработке для оценки величин, являющихся показателями качества обслуживания

3 Формирование реализаций случайного потока заявок

При исследовании сложных систем методом имитационного моделирования существенное внимание уделяется учету случайных факторов.
В качестве математических схем, используемых для формализации действия этих факторов, используются случайные события, случайные величины и случайные процессы (функции). Формирование на ЭВМ реализаций случайных объектов любой природы сводится к выработке и преобразованию случайных чисел. Рассмотрим способ получения возможных значений случайных величин с заданным законом распределения. Для формирования возможных значений случайных величин с заданным законом распределения исходным материалом служат случайные величины, имеющие равномерное распределение в интервале (0, 1). Другими словами, возможные значения xi случайной величины £, имеющей равномерное распределение в интервале (0, 1), могут быть преобразованы в возможные значения yi случайной величины г), закон распределения которой задан. Способ преобразования состоит в том, что из равномерно распределенной совокупности отбираются случайные числа, удовлетворяющие некоторому условию таким образом, чтобы отобранные числа подчинялись заданному закону распределения.
Предположим, что необходимо получить последовательность случайных чисел yi , имеющих функцию плотности 1^(у). Если область определения функции f^y) не ограничена с одной или обеих сторон, необходимо перейти к соответствующему усеченному распределению. Пусть область возможных значений для усеченного распределения равна (a, b).
От случайной величины г), соответствующей функции плотности f ^ y), перейдем к f.
Случайная величина Ъ, будет иметь область возможных значений (0, 1) и функцию плотности f ^(z), задаваемую выражением.
Пусть максимальное значение f^(z) равно f m . Зададим равномерные распределения в интервалах (0, 1) случайных чисел x 2 i-1 и x 2 i. Процедура по лучения последовательности yi случайных чисел, имеющих функцию плотности ^(у), сводится к следующему:
1) из исходной совокупности выбираются пары случайных чисел x2i-1,
2) для этих чисел проверяется справедливость неравенства
х 21 <-- ^[а + (Ъ-а)х 2М ] (3)
m
3) если неравенство (3) выполнено, то очередное число yi определяется из соотношения
yi =a + (b-а)х 21 (4)
При моделировании процессов обслуживания возникает необходимость формирования реализаций случайного потока однородных событий (заявок). Каждое событие потока характеризуется моментом времени tj, в который оно наступает. Чтобы описать случайный поток однородных событий как случайный процесс, достаточно задать закон распределения, характеризующий последовательность случайных величин tj. Для того, чтобы получить реализацию потока однородных событий t1, t2..., tk, необходимо сформировать реализацию z b z 2 ,...,zk k-мерного случайного вектора ££2,..., Sk и вычислить значения ti в соответствии со следующими соотношениями:
t 2 =
Пусть стационарный ординарный поток с ограниченным последействием задан функцией плотности f(z). В соответствии с формулой Пальма (6) найдем функцию плотности f1(z1) для первого интервала z1.
1- Jf (u) du
Теперь можно сформировать случайное число z b как было показано выше, соответствующее функции плотности f1(z1), и получить момент появления первой заявки t1 = z1 . Далее формируем ряд случайных чисел, соответствующих функции плотности f(z), и при помощи соотношения (4) вычисляем значения величин t2, t3 ,.., tk.
4 Обработка результатов моделирования
При реализации моделирующих алгоритмов на ЭВМ вырабатывается информация о состояниях исследуемой системы. Эта информация является исходным материалом для определения приближенных значений искомых величин, или, как принято говорить, оценок для искомых величин.
Оценка вероятности события А вычисляется по формуле
p(A) = mN . (7)
Оценка среднего значения x случайной величины Ъ, вычисляется по
формуле
_ 1 n
k =1
Оценка S 2 для дисперсии случайной величины ^ вычисляется по формуле
1 N 1 (N Л 2
S 2 =1 YA xk 2-5> J (9)
Оценка корреляционного момента К^ для случайных величин Ъ, и ц с возможными значениями x k и y k соответственно вычисляется по формуле
1 N 1 NN
У> [ Ух

5 Пример моделирования СМО
Рассмотрим следующую систему:
1 Требования поступают в случайные моменты времени, при этом
промежуток времени Q между любыми двумя последовательными требованиями имеет показательный закон с параметром i, т. е. функция распределения имеет вид
>0. (11) Система обслуживания состоит из s одинаковых, пронумерованных приборов.
3 Время Т о бсл - случайная величина с равномерным законом распределения на отрезке .
4 Система без ожидания, т.е. требование, заставшее все приборы занятыми, покидает систему.
5 Дисциплина обслуживания такова: если в момент поступления k - го требования первый прибор свободен, то он приступает к обслуживанию требования; если этот прибор занят, а второй свободен, то требование обслуживается вторым прибором, и т.д.
Требуется оценить математические ожидания числа требований, обслуженных системой за время Т и получивших отказ.
За начальный момент расчета выберем момент поступления первого требования Т1=0. Введем следующие обозначения: Тk- момент поступления k-го требования; ti - момент окончания обслуживания требования i-м прибором, i=1, 2, 3, ...,s.
Предположим, что в момент T 1 все приборы свободны.
Первое требование поступает на прибор 1. Время обслуживания этим прибором имеет равномерное распределение на отрезке . Поэтому конкретное значение tобсл этого времени находим по формуле
(12)
где r- значение случайной величины R , равномерно распределенной на отрезке . Прибор 1 будет занят в течение времени t о бсл. Поэтому момент времени t 1 окончания обслуживания требования прибором 1 следует считать равным: t 1 = Т1+ t о бсл.
Затем следует добавить единицу в счетчик обслуженных требований и перейти к рассмотрению следующего требования.
Предположим, что k требований уже рассмотрено. Определим момент Т k+1 поступления (k+1)-го требования. Для этого найдем значение т промежутка времени между последовательными требованиями. Так как этот про межуток имеет показательный закон, то
12
х = - In r (13)
| Ll
где r -очередное значение случайной величины R . Тогда момент посту пления (k+1)-го требования: Т k +1 = Тк+ Т.
Свободен ли в этот момент первый прибор? Для ответа на этот вопрос необходимо проверить условие ti < Tk + i - Если это условие выполнено, то к моменту Т k +1 первый прибор освободился и может обслуживать требование. В этом случае t 1 заменяем на (Т k +1 + t обсл), добавляем единицу в счетчик об служенных требований и переходим к следующему требованию. Если t 1>Т k +1, то первый прибор в момент Т k +1 занят. В этом случае проверяем, свободен ли второй прибор. Если условие i 2< Tk + i выполнено, заменяем t2 на (Т k +1+ t о бсл), добавляем единицу в счетчик обслуженных требований и переходим к следующему требованию. Если t 2>Т k +1, то проверяем условие 1з<Тк+1 и т. д. Eсли при всех i от 1 до s имеет ti >Т k +1, то в момент Т k +1 все приборы заняты. В этом случае прибавляем единицу в счетчик отказов и переходим к рассмотрению следующего требования. Каждый раз, вычислив Т k +1, надо проверить еще ус ловие окончания реализации: Tk + i < T . Если это условие выполнено, то одна реализация процесса функционирования системы воспроизведена и испыта ние заканчивается. В счетчике обслуженных требований и в счетчике отказов находятся числа n обсл и n отк.
Повторив такое испытание n раз (с использованием различных r) и усреднив результаты опытов, определим оценки математических ожиданий числа обслуженных требований и числа требований, получивших отказ:
(14)
(Ji
n j =1
где (n обсл) j и (n отк) j - значения величин n обсл и n отк в j -ом опыте.
13

Список использованных источников
1 Емельянов А.А. Имитационное моделирование экономических процессов [Текст]: Учеб. пособие для вузов / А.А. Емельянов, Е.А. Власова, Р.В. Дума. - М. : Финансы и статистика, 2002. - 368с.
2 Бусленко, Н.П. Моделирование сложных систем [Текст]/ Н.П. Бусленко.- М. : Наука, 1978. - 399с.
3 Советов Б.Я. Моделирование систем [Текст]: Учеб. для вузов / Б.Я. Сове тов, С.А. Яковлев. -М. : Высш. школа, 1985. - 271 с.
4 Советов Б.Я. Моделирование систем [Текст]: Лабораторный практи кум: Учеб. пособие для вузов по специальности: "Автом. сист. обработ. инф. и управл." / Б.Я. Советов, С.А. Яковлев. -М. : Высш. шк., 1989. - 80 с.
5 Максимей И.В. Имитационное моделирование на ЭВМ [Текст]/ Максимей, И.В. -М: РАДИО И СВЯЗЬ, 1988. - 231с.
6 Вентцель Е.С. Теория вероятностей [ Текст ] : учеб. для вузов / Е.С. Вент цель.- М. : Высш. шк., 2001. - 575 с.
7 Гмурман, В.Е. Теория вероятностей и математическая статисти ка [ Текст ] : учеб. пособие / В.Е. Гмурман.- М. : Высш. шк., 2001. - 479 с.
Приложение А
(обязательное)
Примерные темы расчетно-графических работ
1 На травмопункте работает один врач. Длительность лечения больного
и промежутки времени между поступлениями больных - случайные величи ны, распределенные по пуассоновскому закону. По тяжести травм больные делятся на три категории, поступление больного любой категории - случай ное событие с равновероятным распределением. Врач вначале занимается больными с максимально тяжелыми травмами (в порядке их поступления), затем, если таковых нет, больными средней тяжести, и лишь затем - больны ми с легкими травмами. Смоделировать процесс и оценить средние времена ожидания в очереди больных каждой из категорий.
2 В городском автохозяйстве две ремонтные зоны. Первая обслуживает ремонты краткой и средней продолжительности, вторая - средней и долгой. По мере поломок в автохозяйство доставляют транспорт; промежуток време ни между доставками - случайная пуассоновская величина. Продолжительности ремонта - случайная величина с нормальным законом распределения. Смоделировать описанную систему. Оценить средние времена ожидания в очереди транспорта, требующие соответственно краткосрочного, среднесрочного и длительного ремонта.
3 Мини-маркет с одним контролером - кассиром обслуживает покупа телей, входящий поток которых подчиняется закону Пуассона с параметром 20 покупателей/час. Провести моделирование описанного процесса и определить вероятность простоя контролера - кассира среднюю длину очереди, среднее число покупателей в мини-маркете, среднее время ожидания обслуживания, среднее время пребывания покупателей в мини-маркете и дайте оценку его работы.
4 На АТС поступают заявки на междугородние переговоры. Поток зая вок является пуассоновским. В среднем за 1 час поступает 13 заявок. Найдите среднее число заявок, поступающих за сутки, среднее время между появлением заявок. На телефонной станции появляются сбои в работе, если за полчаса на нее поступит более 50 заявок. Найдите вероятность сбоя станции.
5 На станцию технического обслуживания поступает простейший по
ток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.
6 Одна ткачиха обслуживает группу станков, осуществляя по мере необходимости краткосрочное вмешательство, длительность которого - случайная величина. Смоделировать описанную ситуацию. Какова вероятность простоя сразу двух станков. Как велико среднее время простоя одного станка.
7 На междугородней телефонной станции две телефонистки обслуживают общую очередь заказов. Очередной заказ обслуживает та телефонистка, которая первой освободилась. Если обе в момент поступления заказа заняты, звонок аннулируется. Смоделировать процесс, считая входные потоки пуассоновскими.
8 На травмопункте работают два врача. Длительность лечения больно
го и промежутки времени между поступлениями больных - случайные вели чины, распределенные по пуассоновскому закону. По тяжести травм больные делятся на три категории, поступление больного любой категории - случай ное событие с равновероятным распределением. Врач вначале занимается больными с максимально тяжелыми травмами (в порядке их поступления), затем, если таковых нет, больными средней тяжести, и лишь затем - больны ми с легкими травмами. Смоделировать процесс и оценить средние времена ожидания в очереди больных каждой из категорий.
9 На междугородней телефонной станции две телефонистки обслужи
вают общую очередь заказов. Очередной заказ обслуживает та телефонистка,
которая первой освободилась. Если обе в момент поступления заказа заняты, то формируется очередь. Смоделировать процесс, считая входные потоки пу- ассоновскими.
10 В системе передачи данных осуществляется обмен пакетами данных между узлами A и B по дуплексному каналу связи. Пакеты поступают в пункты системы от абонентов с интервалами времени между ними 10 ± 3 мс. Передача пакета занимает 10 мс. В пунктах имеются буферные регистры, ко торые могут хранить два пакета, включая передаваемый. В случае прихода пакета в момент занятости регистров пунктам системы предоставляется вы ход на спутниковую полудуплексную линию связи, которая осуществляет передачу пакетов данных за 10 ± 5 мс. При занятости спутниковой линии па кет получает отказ. Смоделировать обмен информацией в системе передачи данных в течение 1 мин. Определить частоту вызовов спутниковой линии и ее загрузку. В случае возможности отказов определить необходимый для безотказной работы системы объем буферных регистров.
11 Пусть на телефонной станции с одним входом используется обычная система: если абонент занят, то очередь не формируется и надо звонить сно ва. Смоделировать ситуацию: три абонента пытаются дозвониться до одного и того же владельца номера и в случае успеха разговаривают с ним некоторое (случайное по длительности) время. Какова вероятность того, что некто, пы тающийся дозвониться, не сможет это сделать за определенное время Т.
12 Торговая фирма планирует выполнять заказы на приобретение това ров по телефону, для чего необходимо установить соответствующую мини- АТС с несколькими телефонными аппаратами. Если заказ поступает, когда все линии заняты, то клиент получает отказ. Если в момент поступления за явки хотя бы одна линия свободна, то производится переключение на эту линию и оформляется заказ. Интенсивность входящего потока заявок составляет 30 заказов в час. Длительность оформления заявки в среднем равна 5 мин. Определите оптимальное число каналов обслуживания, чтобы обеспечить условие стационарной работы СМО.
13 В магазине самообслуживание 6 контролеров - кассиров. Входящий поток покупателей подчиняется закону Пуассона с интенсивностью 120 чел/час. Один кассир может обслужить 40 человек в час. Определите вероят ность простоя кассира, среднее число покупателей в очереди, среднее время ожидания, среднее число занятых кассиров. Дайте оценку работы СМО.
14 В магазин самообслуживания поступает пуассоновский поток с ин тенсивностью 200 покупателей в час. В течение дня их обслуживают 3 кон тролера-кассира с интенсивностью 90 покупателей в час. Интенсивность входного потока покупателей в часы пик возрастает до величины 400 поку пателей в час, а в часы спада достигает величины 100 покупателей в час. Определите вероятность образования очереди в магазине и среднюю длину очереди в течение дня, а также необходимое число контролеров-кассиров в часы пик и часы спада, обеспечивающие такую же длину очереди и вероятность ее образования, как и в номинальном режиме.
15 Среднее число покупателей, поступающих на узел расчета в магазин самообслуживания 100 чел/час. Кассир может обслужить 60 человек в час. Смоделируйте процесс и определите, какое число кассиров необходимо для того, чтобы вероятность появления очереди не превысила 0.6.
16 Провести моделирование очереди в магазине с одним продавцом при равновероятных законах распределения случайных величин: прихода по купателей и длительности обслуживания (при некотором фиксированном на боре параметров). Получить устойчивые характеристики: средние значения ожидания в очереди покупателем и простой продавца в ожидании прихода покупателей. Оценить их достоверность.
17 Провести моделирование очереди в магазине с одним продавцом при пуассоновских законах распределения случайных величин: прихода по купателей и длительности обслуживания (при некотором фиксированном на боре параметров). Получить устойчивые характеристики: средние значения ожидания в очереди покупателем и простой продавца в ожидании прихода покупателей. Оценить их достоверность.
18 Создайте модель бензоколонки. Найдите показатели качества обслуживания заявок. Определите количество стоек с тем, чтобы очередь не увеличивалась.
19 Среднее число покупателей, поступающих на узел расчета в магазин самообслуживания, 60 человек в час. Кассир может обслужить 35 человек в час. Смоделируйте процесс и определите, какое число кассиров необходимо для того, чтобы вероятность появления очереди не превысила 0.6.
20 Разработайте модель автобусного маршрута с n остановками. Определите показатели эффективности использования СМО.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»