Гениальные открытия человечества. Все самые важные изобретения человека за все время

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

День изобретателя и рационализатора отмечается в России в последнюю субботу июня. По предложению Академии наук СССР в конце 1950-х годов был введен День изобретателя и рационализатора. Первоначально День изобретателя и рационализатора представлял собой советское подобие присуждения Нобелевской премии. 25 июня Академия наук рассматривала все рационализаторские предложения, выдвинутые за прошедший год, отбирала лучшие и награждала их авторов.

История изобретательства

С прошествием времени потерялось первоначальное значение Дня изобретателя и рационализатора, начиная с 1979 года этот день стал просто «профессиональным» праздником всех изобретателей и рационализаторов. Сейчас День изобретателя и рационализатора отмечается в нашей стране. В России изобретены множество технических средств, изменившие историю человечества: талантливый русский ученый Д.И. Виноградов открыл секрет изготовления фарфора, русский ученый-агроном А.Т. Болотов предложил использовать многопольные системы в земледелии взамен патриархальному трехполью, ученый с мировым именем В.Н. Ипатьев работал в области органической химии, и открыл гетерогенный катализ, Н.И. Кибальчич за несколько дней до казни разработал проект реактивного летающего аппарата для полета в космос, персональный компьютер, по мнению некоторых авторов, был изобретен в 1968 году советским конструктором А.А. Гороховым, который назывался «программирующий прибор» и многие другие открытия и изобретения.

В истории развития советского изобретательства период 1924 - 1931 гг. - так называемый «патентный период» - занимает особое место. В связи с переходом от военного коммунизма к новой экономической политике в нашей стране возник новый хозяйственный механизм, основанный на самостоятельности предприятии, на дальнейшем развитии товарно-денежных отношений, на конкурентных отношениях между предприятиями. Он требовал своего закрепления в виде новой патентной охраны изобретений. Разработанный в 1921-1924 гг. и принятый 12 сентября 1924 г. Закон «О патентах на изобретения» был приспособлен к условиям производства с привлечением частного капитала к хозяйственному строительству и на условиях и в границах, установленных советской властью. Патентным законом 1924 г. предусматривалась только одна форма охраны изобретений - патент, право на изобретение закреплялось за патентообладателем.

Патент - документ, удостоверяющий признание предложения изобретением, приоритет изобретения, авторство на изобретение, исключительное право патентообладателя на изобретение.

В 1924-1931 гг. сложилась целая сеть изобретательских органов - Высшие (всесоюзные и республиканские) руководящие органы по изобретательству, изобретательские органы среднего звена управления (при краевых, областных СНХ, трестах, главных управлениях, синдикатах), местные изобретательские органы (при производственных и транспортных предприятиях).

Большая роль в развитии изобретательства принадлежала массовым общественным организациям - Всесоюзному обществу изобретателей (ВОИЗ) (1932-1938 гг.), Всесоюзному обществу изобретателей и рационализаторов (ВОИР) - с 1959 г. по 1992 г., а с 1992 г. - Всероссийскому обществу изобретателей и рационализаторов.

Указом Президиума Верховного Совета СССР от 24 января 1979 г. был учрежден ежегодный Всесоюзный день изобретателя и рационализатора, который празднуется в последнюю субботу июня месяца, и этот праздник пока никто не отменял.

В настоящее время выдачей патентов занимается Федеральная служба по интеллектуальной собственности, патентам и товарным знакам. Присуждаются почетные звания «Заслуженный изобретатель Российской Федерации» и «Заслуженный рационализатор Российской Федерации». В 2005 году в Роспатент от российских изобретателей поступило около 24 тысяч заявок на выдачу патентов, было выдано 19,5 патентов на изобретения.

Интеллектуальная собственность

Понятие «интеллектуальная собственность» является обобщающим по отношению к целому ряду правовых институтов, из которых наиболее значимыми являются институт коммерческой тайны, патентное право, авторские права и товарные знаки. Законодательство о коммерческой тайне и патентное право способствуют исследованиям и развитию новых идей. Авторское право способствует созданию литературных, художественных и музыкальных произведений, а также программного обеспечения для компьютеров. Законодательство о товарных знаках «увязывает» продукт с его производителем.

Коммерческая тайна в форме производственных секретов существовала с незапамятных времен. Древние мастера, несомненно, охраняли приемы, с помощью которых они превращали камни в орудия. Эти мастера задолго до возникновения какой бы то ни было правовой защиты знали, какое преимущество они получали от знания этих секретов. Однако обладание секретами, в сущности, дает лишь ограниченную защиту. Только тысячелетия спустя возникло право, охраняющее секреты производства. Охрана секретов развилась в отрасль небывалого значения, а технические знания и коммерческая тайна превратились в наиболее существенные ценности многих отраслей бизнеса.

Патентное право стало развиваться относительно недавно. Можно сказать, что патентное право служит определенным признанием несовершенства системы рыночной экономики, ибо рыночная экономика, хорошо приспособленная для обеспечения производства и распределения товаров, малопригодна для того, чтобы побуждать к созданию новых и лучших товаров. Это связано с тем, что при изобретении нового продукта в чисто рыночной системе конкуренты тотчас его копируют и сводят его цену до стоимости производственных затрат, тем самым снижая прибыль до уровня, на котором невозможно возместить расходы на исследования и разработки, приведшие к появлению изобретения. Патентное право как раз и возникло для разрешения этой проблемы. Обеспечивая охрану изобретения от конкурентов на долгие годы вперед, патент увеличивает шансы получения прибыли и, тем самым, стимулирует изобретательство.

Точно так же, как институт патентования способствует развитию и исследованиям нового, авторское право содействует созданию литературных произведений. На написание книги могут уйти годы. В рыночной системе в чистом виде, если книга успешно продается, другие издатели сразу же издадут ту же самую книгу. Такая конкуренция приведет к снижению цены, что, соответственно, породит нежелание авторов и издателей затрачивать много времени и денег, требующихся для написания и издания книги. Обеспечивая охрану прав автора и издателя, авторское право создает экономический стимул к созданию новых произведений.

Товарный знак имеет совсем иную функцию. Когда еще торговля велась на уровне деревенского рынка, простыми товарами, покупатели лично знали продавцов и легко могли оценивать качество товаров (например, ощупывать фрукты). Со временем рынки развились до уровня национальных и международных, возникло массовое производство товаров, зачастую дорогих и сложных, и определение производителя конкретного продукта стало чрезвычайно важным вопросом. Товарный знак с пользой служил как производителю, так и покупателю. Производители высококачественных товаров начали ставить свой товарный знак, и поскольку они уже имели завоеванную репутацию, то могли назначать более высокую цену. Покупатель же мог относиться к товару с доверием, ибо знал репутацию конкретного производителя.

История открытия новой клетки

Клеточная теория или клеточная доктрина гласит, что все организмы состоят из аналогичных организованных единиц под названием клетки. Идея была официально сформулирована в 1839 году Шлейденом и Шванном и является основой современной биологии. Этой идее предшествовали другие биологические парадигмы, такие как Теория эволюции Дарвина (1859), Теория наследственности Менделя (1865) и создание сравнительной биохимии (1940).

В 1838 году Теодор Шванн и Маттиас Шлейден наслаждались послеобеденным кофе за разговором о клеточных исследованиях. Считается, что Шванн, услышав описание Шлейдена о клетках растения с ядром, был просто поражен сходством этих растительных клеток с клетками, которые он обнаружил в тканях животных. Оба ученных незамедлительно направились в лабораторию Шванна, чтобы посмотреть на его образцы. В следующем году Шванн опубликовал книгу о животных и растительных клетках (Шванн 1839), но в этом трактате не назывались имена других, внесших вклад в данные знания, в том числе не упоминалось и имя Шлейдена (1838). Он обобщил свои наблюдения в трех выводах о клетках:

Сегодня мы знаем, что первые два тезиса правильны, но третий полностью ошибочен. Правильная интерпретация образования клеток путем деления была, в конце концов, сформулирована другими учеными и официально провозглашена в знаменитом изречении Рудольфа Вирхова: «Все клетки возникают только из уже существующих клеток».

Хронология событий

1858 – Рудольф Вирхов (врач, патологоанатом и антрополог) произносит свою знаменитую фразу «omnis cellula e cellula», что означает, что каждая клетка может образовываться только уже из существующей клетки.

1957 – Мезельсон, Сталь и Виноград разрабатывают градиент плотности центрифугирования хлорида цезия для разделения нуклеиновых кислот.

1965 – Хэм представляет бессывороточный носитель. Компания Cambridge Instruments выпускает первый коммерческий сканирующий электронный микроскоп.

1976 – Сато и его коллеги публикуют документы, показывающие, что разные клеточные линии требуют различного состава гормонов и различных факторов роста в сывороточной среде.

1981 – Выращены первые трансгенные мыши и дрозофилы. Получена первая эмбриональная стволовая клеточная линия мыши.

1999 – Гамильтон и Болкомб открывают малые интерферирующие РНК как пост-транскрипционное подавление экспрессии генов у растений.

История приручения электричества

Сила электрического разряда была известна давно, но уловить его и поставить на службу человечеству не удавалось. В начале 19 века опыты с электрическим током привлекали внимание ученых из разных стран. В 1820 году датский физик Ганс Христиан Эрстед описал явление отклонения магнитной стрелки компаса под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. Позже это и ряд других открытий послужило основой для создания трех главных устройств электротехники – электрического генератора, электрического трансформатора и электрического двигателя.

У истоков освещения с помощью электричества стоял Василий Владимирович Петров (1761-1834), профессор медицинско-хирургической Академии в Петербурге. Он был преемником и продолжателем трудов М.В. Ломоносова. Исследуя световые явления, вызываемые электрическим током, В.В.Петров сделал свое знаменитое открытие - электрическую дугу, сопровождающуюся появлением яркого свечения и высокой температуры. Это произошло в 1802 г. и имело огромное историческое значение. Наблюдения и анализ Петровым свойств электрической дуги легли в основу создания электродуговых ламп, ламп накаливания, электросварки металлов и многого другого.

Александр Николаевич Лодыгин ещё в 1872 году предложил вместо угольных электродов использовать нить накаливания, которая при протекании электрического тока ярко светилась. В 1874 году Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии. В 1875 г. Павел Николаевич Яблочков (1847-1894), создает электрическую свечу, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). Чтобы горение (свечение) было более продолжительным, на одном подсвечнике помещалось четыре свечи, которые горели последовательно (во времени).

В 1876 году Павел Яблочков завершил разработку конструкции электрической свечи, начатой в 1875 г. и 23 марта получил французский патент, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем лампа А. Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Так же Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.

Тогда же в 1876 году в России была сооружена первая электростанция на Сормовском машиностроительном заводе, ее прародительница была построена в 1873 году под руководством бельгийско-французского изобретателя З.Т. Грамма для питания системы освещения завода, так называемая блок-станция.

В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания. Первые электростанции Петербурга вначале размещались на баржах у причалов рек Мойки и Фонтанки. Мощность каждой станции составляла примерно 200 кВт.

Первая в мире центральная станция была пущена в работу в 1882 году в Нью-Йорке, она имела мощность 500 кВт.

История изобретения радио

Создателем первой успешной системы обмена информацией с помощью радиоволн (радиотелеграфии) традиционно считается итальянский инженер Гульельмо Маркони (1896). Однако у Маркони, как и у большинства авторов крупных изобретений, были предшественники. В России «изобретателем радио» считается А.С. Попов, создавший в 1895 г. практичный радиоприёмник. В США таковым считается Никола Тесла, запатентовавший в 1893 году радиопередатчик, а в 1895 г. приёмник; его приоритет перед Маркони был признан в судебном порядке в 1943 году. Во Франции изобретателем беспроволочной телеграфии долгое время считался создатель когерера (1890) Эдуард Бранли. Первым же изобретателем способов передачи и приёма электромагнитных волн
(которые длительное время назывались «Волнами Герца - Hertzian Waves»), является сам их первооткрыватель, немецкий учёный Генрих Герц (1888).

Принцип работы

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амлитуда сигнала). Далее передаваемый сигнал модулирует более высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей - несущей). Таким образом, происходит извлечение полезного сигнала.

Распространение радиоволн

Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).

История изобретения фотографии

Фотография, как и другие великие изобретения XIX века, была открыта не сразу. С давних пор людям известно свойство темной комнаты воспроизводить световые рисунки внешнего мира. С помощью камер-обскур в России, например, в XVIII веке были документально зарисованы виды Петербурга, Кронштадта, Петергофа. Это была «фотография до фотографии»: рисовальщику уже не нужно было задумываться о соблюдении пропорций, его труд упростился в разы. Но люди продолжали думать над тем, как полностью механизировать процесс рисования, научиться не только фокусировать оптический рисунок на плоскости, но и надежно закреплять его химическим способом.

Такую возможность наука предоставила в первой трети девятнадцатого века. В 1818 году русский ученый X. Гротгус указал на связь фотохимических превращений в веществах с поглощением света. В скором времени ту же особенность установили американский химик Д. Дрейпер и английский ученый Д. Гершель. Так был открыт основной закон фотохимии.

Первый в мире снимок был получен Н. Ньепсом. На нём было запечатлено изображение крыши соседнего дома. Этот снимок ещё в 1826 году подтвердил возможность «механического рисования» с помощью солнца.

Датой рождения светописи считается 1839 год. И автором изобретения фотографии историки признают не только Н. Ньепса, но и Л. Дагерра и Ф. Тальбота, чьи первые снимки появились гораздо позже.

Происходит это из-за того, что гелиографический метод Н. Ньепса был несовершенен, непригоден для практического фотографирования из-за выдержки в 8 часов. К тому же Н. Ньепс не опубликовал при жизни свой способ. О нём знал лишь Л. Дагерр, с которым Ньепс вступил в договорные отношения по совершенствованию фотопроцесса. Именно Даггер и прославил своё имя как человек, изобрётший фотографию!

Фотоаппарат (фотографический аппарат, фотокамера) - устройство, осуществляющее формирование и последующую фиксацию статического изображения реального сюжета.

Принцип работы

Преобразование светового потока.

Световой поток от реального сюжета преобразуется съёмочным объективом в действительное изображение; калибруется по интенсивности (диафрагмой объектива) и времени воздействия (выдержкой); балансируется по цвету светофильтрами.

Фиксация светового потока.

В плёночном фотоаппарате запоминание изображения происходит на фотоматериале (фотоплёнке, фотопластинке и т. п.).
В цифровом фотоаппарате изображение воспринимается электронной матрицей, полученный с матрицы сигнал подвергается оцифровке, запоминание происходит в буферном ОЗУ и затем сохраняется на каком-либо носителе, обычно съемном. В простейших или специализированных камерах цифровой образ может сразу передаваться на компьютер.

История изобретения автомобиля

Первые известные чертежи автомобиля (с пружинным приводом) принадлежат Леонардо да Винчи (стр. 812R Codex Atlanticus), однако ни действующего экземпляра, ни сведений о его существовании до наших дней не дошло. В 2004 году эксперты Музея истории науки из Флоренции смогли восстановить по чертежам этот автомобиль, доказав тем самым правильность идеи Леонардо. В эпоху Возрождения и позже в ряде европейских стран «самодвижущиеся» тележки и экипажи с пружинным двигателем строились в единичных количествах для участия в маскарадах и парадах.

В 1769 году французский изобретатель Кюньо испытал первый образец машины с паровым двигателем, известный как «малая телега Кюньо», а в 1770 году - «большую телегу Кюньо». Сам изобретатель назвал её «Огненная телега» - она предназначалась для буксировки артиллерийских орудий.

«Тележку Кюньо» считают предшественницей не только автомобиля, но и паровоза, поскольку она приводилась в движение силой пара. В XIX веке дилижансы на паровой тяге и рутьеры (паровые тягачи, то есть безрельсовые паровозы) для обычных дорог строились в Англии, Франции и применялись в ряде европейских стран, включая Россию, однако они были тяжёлыми, прожорливыми и неудобными, поэтому широкого распространения не получили.

Появление лёгкого, компактного и достаточно мощного двигателя внутреннего сгорания открыло широкие возможности для развития автомобиля. В 1885 году немецкий изобретатель Г. Даймлер, а в 1886 году его соотечественник К. Бенц изготовили и запатентовали первые самодвижущиеся экипажи с бензиновыми двигателями. В 1895 году К. Бенц изготовил первый автобус с ДВС. В 1896 году Г. Даймлер изготовил первое такси и грузовик. В последнем десятилетии XIX века в Германии, Франции и Англии зародилась автомобильная промышленность.

Немалый вклад в широкое распространение автомобильного транспорта внёс американский изобретатель и промышленник Г. Форд, широко применивший конвейерную систему сборки автомобилей.

В России автомобили появились в конце XIX века. (Первый иностранный автомобиль в России появился в 1891 г. Его привез из Франции на пароходе издатель и редактор газеты «Одесский листок» В. В. Навроцкий). Первый русский автомобиль был создан Яковлевым и Фрезе в 1896 году и показан на Всероссийской выставке в Нижнем Новгороде.

В первой четверти XX века широкое распространение получили электромобили и автомобили с паровой машиной. В 1900 году примерно половина автомобилей в США была на паровом ходу, в 1910-х в Нью-Йорке в такси работало до 70 тыс. электромобилей.

В том же 1900 году Фердинанд Порше сконструировал электромобиль с четырьмя ведущими колёсами, в которых располагались приводящие их в движение электродвигатели. Через два года голландская фирма Spyker выпустила гоночный автомобиль с полным приводом, оснащённый межосевым дифференциалом.
В 1906 году паровой автомобиль фирмы Stanley установил рекорд скорости - 203 км/ч. Модель 1907 года проезжала на одной заправке водой 50 миль. Необходимое для движения давление пара достигалось за 10-15 минут от запуска машины. Это были любимые машины полицейских и пожарных Новой Англии. Братья Стэнли производили около 1000 автомобилей в год. В 1909 году братья открыли первую в Колорадо гостиницу люкс-класса. От железнодорожной станции до гостиницы гостей возил паровой автобус, что стало фактическим началом автомобильного туризма. Фирма Stanley выпускала автомобили на паровом ходу до 1927 года. Несмотря на ряд достоинств (хорошая тяга, многотопливность) паровые автомобили сошли со сцены к 1930-м из-за своей неэкономичности и сложностей при эксплуатации.

В 1923 году фирма Бенца изготовила первый грузовой автомобиль с двигателем Дизеля.

В России в 1780-е годы над проектом автомобиля работал известный русский изобретатель Иван Кулибин.

В 1791 году им была изготовлена повозка-самокатка, в которой он применил маховое колесо, тормоз, коробку скоростей, подшипники качения и т. д.
Немалый вклад в широкое распространение автомобильного транспорта внёс американский изобретатель и промышленник Г.Форд, широко применивший конвейерную систему сборки автомобилей.

История изобретения компьютера

В далёком феврале 1946 года мир узнал о том, что в Соединенных Штатах запущен первый в мире электронный компьютер ENIAC, строительство которого обошлось почти в полмиллиона долларов.

Агрегат, оборудование для которого монтировалось в течение трех лет (с 1943 по 1945 годы), поражал воображение современников своими размерами. Electronic Numerical Integrator And Computer (ENIAC) – электронный цифровой интегратор и компьютер весил 8 тонн, потреблял 140 кВт энергии и охлаждался авиационными двигателями Chrysler. В этом году компьютер ENIAC отпразднует своё шестидесятичетырёхлетие.

Все компьютеры, изобретённые до него, были лишь его вариантами и прототипами и рассматривались как экспериментальные. Да и сам ENIAC, равный по мощности тысячам арифмометров, назывался сначала «электронным вычислителем».

«Бабушкой» именинника и «прабабушкой» нынешних современных компьютеров можно было бы с полной уверенностью назвать аналитическую машину Бэббиджа, до изобретения которой уже создавалась не одна счетная механическая машина: арифмометр Кальмара, устройство Блеза Паскаля, машина Лейбница.

Но их можно отнести, разве что к обычным «калькуляторам», в то время как аналитическое устройство Бэббиджа являлось уже, по сути, полноценным компьютером, а астроном (и даже основатель Королевского астрономического общества) Чарльз Бэббидж вошел в историю как изобретатель первого прообраза компьютера.

Движимый желанием и необходимостью автоматизировать свой труд, в котором было много рутинных математических вычислений, Бэббидж искал решения этой проблемы. И хотя к 1840 году он далеко продвинулся в теоретических рассуждениях и почти полностью закончил разработку аналитической машины, но построить ему её так и не удалось по причине множества технологических проблем.

Его идеи слишком опережали технические возможности того времени, и потому подобные, пусть даже полностью спроектированные устройства построить в ту эпоху было невозможно. Количество деталей машины было более 50000. Устройство должно было приводиться в действие энергией пара, что не требовало присутствия людей, и потому вычисления были бы полностью автоматизированы. Аналитическая машина могла выполнять конкретную программу (определенный набор инструкций) и записывала её на перфокарты (прямоугольнички из картона).

В машине имелись все основные компоненты, составляющие сегодня современный компьютер. И когда в 1991 г. к двухсотлетию со дня рождения изобретателя сотрудниками лондонского Музея науки были созданы по его чертежам «Разностная машина №2», а через несколько лет и принтер (весом 2,6 и 3,5 тонн соответственно; с использованием технологий середины XIX века), - оба устройства отлично заработали, что наглядно продемонстрировало: история компьютеров могла бы начаться раньше на целую сотню лет. Но, как уже было сказано, при жизни изобретателя его детищу так и не суждено было увидеть мир. И только после смерти Бэббиджа, когда его сын Генри собрал центральный блок аналитической машины, было очевидно, что машина работоспособна. Тем не менее, многие идеи Чарльза Бэббиджа внесли значительный вклад в вычислительную науку и нашли свое место в будущих конструкциях других инженеров.

И всё же первым, реально работающим на практических задачах компьютером, был именно ENIAC, разработанный специально для нужд армии и предназначавшийся тогда для обсчета баллистических таблиц артиллерии и авиации. На тот момент времени это была одна из самых важных и серьезных задач. Мощностей и производительности «вычислительного армейского ресурса», который состоял из людей, стало катастрофически не хватать, и потому в начале 1943 года учёные-кибернетики занялись разработкой нового вычислительного устройства – компьютера ENIAC (позже суперкомпьютер применялся, кроме баллистики, для анализа космических излучений, а также для проектирования водородной бомбы).

История открытия Пенициллина

В 1928 году Александр Флеминг проводил рядовой эксперимент в ходе многолетнего исследования, посвященного изучению борьбы человеческого организма с бактериальными инфекциями. Вырастив колонии культуры Staphylococcus, он обнаружил, что некоторые из чашек для культивирования заражены обыкновенной плесенью Penicillium - веществом, из-за которого хлеб при долгом лежании становится зеленым. Вокруг каждого пятна плесени Флеминг заметил область, в которой бактерий не было. Из этого он сделал вывод, что плесень вырабатывает вещество, убивающее бактерии. В последствии он выделил молекулу, ныне известную как «пенициллин». Это и был первый современный антибиотик.

В течение 1930-х годов предпринимались безуспешные попытки улучшить качество пенициллина и других антибиотиков, научившись получать их в достаточно чистом виде. Первые антибиотики напоминали большинство современных противораковых препаратов - было неясно, убьет ли лекарство возбудителя болезни до того, как оно убьет пациента. И только в 1938 году двум ученым Оксфордского университета, Говарду Флори (Howard Florey, 1898-1968) и Эрнсту Чейну (Ernst Chain, 1906-79), удалось выделить чистую форму пенициллина. Первые инъекции нового средства были сделаны человеку 12 февраля 1941 года. Через несколько месяцев ученым удалось накопить такое количество пенициллина, которого могло с избытком хватить для спасения человеческой жизни. Счастливцем был пятнадцатилетний мальчик, больной заражением крови, которое не поддавалось лечению. Это был первый человек, которому пенициллин спас жизнь. В это время весь мир уже три года был охвачен пожаром войны. От заражения крови и гангрены гибли тысячи раненых. Требовалось огромное количество пенициллина. Флори выехал в Соединенные Штаты Америки, где ему удалось заинтересовать производством пенициллина правительство и крупные промышленные концерны. У нас в изучении свойств пенициллина и получении этого препарата многого достигла Зинаида Виссарионовна Ермольева. В 1943 году она поставила целью освоить приготовление пенициллина сначала лабораторным, а потом и фабричным путем. Видоизменяя предложенные иностранными авторами методы, Ермольева получила активный пенициллин. Не дождавшись фабричного его изготовления, она вылетела в Восточную Пруссию, чтобы вместе с главным хирургом Советской Армии Н. Н. Бурденко испытать действие пенициллина на раненых. Советский пенициллин дал при лечении раненых прекрасные результаты. Только в течение первых двух месяцев пользования им в госпиталях Москвы из 1 420 раненых и больных поправилось 1 227 человек. Пенициллин положил начало новой эре в медицине - лечению болезней антибиотиками. За огромные заслуги перед человечеством Флеминг, Чейн и Флори были в 1945 году удостоены Нобелевской премии. Благодаря пенициллину и другим антибиотикам было спасено бесчисленное количество жизней. Кроме того, пенициллин стал первым лекарством, на примере которого было замечено возникновение устойчивости микробов к антибиотикам.

Изобретение фонендоскопа

Способ диагностики через прослушивание грудной клетки был известен ещё Гиппократу. В 1816 г. доктор Лаэннек обратил внимание на ребят, игравших вокруг бревен строительного леса. Одни дети царапали и колотили палками по одному концу бревна, а другие слушали, приложив ухо к другому. Звук проводился через дерево. Лаэннек туго свернул тетрадь и, приложив один её конец к груди больной, а другой к собственному уху, с удивлением и радостью услышал биение сердца гораздо громче и отчетливее, чем раньше. На следующий день врач с успехом применил этот способ в своей клинике в госпитале Неккер.

В настоящее время стетоскоп (его усовершенствованная разновидность - фонендоскоп) считается классическим символом профессии врача.

История изобретения микроскопа

Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янсен и его сын Захарий Янсен изобрели первый микроскоп в 1590 году, но это было заявление самого Захария Янсена в середине ХVII века. Дата, конечно, неточна, так как оказалось, что Захарий родился около 1590 г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в 1609 г. Галилей представил свой микроскоп публике в Академии деи Линчей, основанной Федерико Чези в 1603 г. Десятью годами позже Галилея Корнелиус Дреббель изобретает новый тип микроскопа, с двумя выпуклыми линзами. Кристиан Гюйгенс, другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х, которая ахроматически регулировалась. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. В 1665 году англичанин Роберт Гук сконструировал собственный микроскоп и опробовал его на пробке. В результате этого исследования появилось название «клетки». Антон Ван Левенгук (1632-1723) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов, а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.

В группе немецкого учёного Штефана Хелля из Института Биофизической Химии научного сообщества Макса Планка (Гёттинген) в сотрудничестве с аргентинским учёным Мариано Босси в 2006 году был разработан оптический микроскоп под названием Наноскоп, позволяющий преодолевать барьер Аббе и наблюдать объекты размером около 10 нм (а на 2010 год и ещё меньше), оставаясь в диапазоне видимого излучения, получая при этом высококачественные трёхмерные изображения объектов, ранее недоступных для обычной световой и конфокальной микроскопии.

История изобретения подзорной трубы

Имя изобретателя подзорной трубы доподлинно неизвестно, оно кануло в веках, а сам прибор оброс множеством легенд и самых невероятных историй. Самый ранний документ датируется 1268 годом и принадлежит перу англичанина Роджера Бэкона - монаха францисканского ордена, в котором он теоретически описывает её действие. В начале XVI века голландский оптик Липперсгей, а вслед за ним и Галилей применили на практике изыскания предшественников и создали настоящую подзорную трубу для наблюдения за отдаленными объектами на суше и на море. Несколько лет спустя Галилей усовершенствовал свой прибор, сконструировав первый телескоп.

Изобретение стеклянных очков

Хотя очки как таковые были изобретены только в XIII веке, ещё в Древнем Риме богатые персоны использовали особым образом ограненные драгоценными камни для того, чтобы смотреть через них на солнце.Первые стеклянные очки появились в XIII веке в Италии. В это время итальянские стеклянные мастера считались искуснейшими в мире изготовителями, шлифовальщиками и полировщиками стекла. Особенно славилось венецианское стекло, изделия из которого часто имели очень сложную, замысловатую форму. Постоянно обрабатывая сферические, изогнутые и выпуклые поверхности, то и дело поднося их к глазам, мастера в конце концов заметили оптические возможности стекла. Изобретателем стеклянных очков считается мастер Сальвино Армати из Флоренции. В 1285 году ему пришла мысль соединить две линзы с помощью оправы.В самые первые очки вставляли длиннофокусные выпуклые, собирающие линзы, и служили они для исправления дальнозоркости. Гораздо позже было открыто, что с помощью тех же очков, вставив в них вогнутые рассеивающие линзы, можно исправлять близорукость. Первые описания таких очков относятся только к XVI веку.Долгое время очки были очень дорогими, что объяснялось трудностью изготовления по-настоящему чистых и прозрачных стекол. Их наряду с драгоценностями включали в свои завещания короли, князья и другие богатые люди.Самое первое изображение очков приписывают Томасо Да Модена, - на фреске 1352 года им написан портрет кардинала Уго ди Прованс, пишущего с очками на носу.Следующим шагом в истории очковой оптики было изобретение двухфокусной (бифокальной) очковой линзы. Считается, что это изобретение в 1784-1785 гг. сделал знаменитый американский деятель и изобретатель Бенджамин Франклин, который страдал слабым зрением и постоянно носил с собой две пары очков – одну для рассматривания удаленных объектов, другую – для чтения. Свое изобретение он осуществил, будучи в преклонном 78-летнем возрасте, поняв, что для коррекции возрастной дальнозоркости желательно иметь в очковых линзах зоны разной рефракции. Для этого он просто вставил половинки двух линз в оправу. В письме своему другу он сообщал о том, что придумал очки, через которые можно хорошо видеть объекты как вдали, так и вблизи.

Изобретение телескопа

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. Именно он подал в 1608 году заявку на патент на пару линз, размещенных в трубке. Он назвал устройство подзорной трубой.В августе 1609 года Галилео изготовил первый в мире полноценный телескоп. Сначала это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор. Благодаря прибору сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Изобретение сотового телефона

3 апреля 1973 года глава подразделения мобильной связи Motorola Мартин Купер, гуляя по центру Манхеттена, еще за 10 лет до появления коммерческой сотовой телефонии, позвонил своему конкуренту и рассказал, что звонит с улицы с помощью «ручного» сотового телефона. Первый образец был похож на килограммовый кирпич высотой в 25 см, толщиной и шириной около 5 см.Основные принципы мобильной телефонии были разработаны компанией AT&T Bell Labs еще в 1946 г. Тогда эта фирма создала первый в мире радиотелефонный сервис. Это был гибрид телефона и радиопередатчика - с помощью радиостанции, установленной в машине, можно было передать сигнал на АТС и совершить обычный телефонный звонок. Позвонить на радиотелефон было значительно сложнее: абоненту требовалось дозвониться до телефонной станции и сообщить номер телефона, установленного в машине. Возможности таких радиотелефонов были ограничены: мешали помехи и небольшой радиус действия радиостанции. До начала 1960-х годов многие компании отказывались проводить исследования в области создания сотовой связи, поскольку приходили к выводу, что в принципе невозможно создать компактный сотовый телефонный аппарат. В это время компания AT&T и решила развивать сотовую телефонию в стиле автомобильных радиостанций. 12-килограммовый прибор размещался в багажнике машины, пульт управления и трубка - в салоне. Для антенны приходилось высверливать отверстие в крыше. Несмотря на то, что владельцам не приходилось таскать тяжести в руках, устройство связи не достигло заметного коммерческого успеха.Первый коммерческий сотовый телефон появился на рынке только 6 марта 1983 года. В этот день компания Motorola представила аппарат DynaTAC 8000Х - результат 15 лет разработок, на которые было потрачено более $100 млн. Первый «мобильник» весил гораздо меньше прототипа - 794 грамма и продавался за три с половиной тысячи долларов. Даже несмотря на высокую цену сама идея быть всегда на связи настолько воодушевила пользователей, что в очередь на покупку DynaTAC 8000X записывались тысячи американцев. В 1983 году в мире насчитывался 1 млн. абонентов, в 1990 году - 11 млн. Распространение сотовых технологий делало этот сервис все более дешевым, качественным и доступным. В результате, по данным Международного Телекоммуникационного Союза – International Telecommunication Union, в 1995 году в мире насчитывалось уже 90,7 млн. владельцев сотовых телефонов, за последующие шесть лет их число выросло более чем в 10 раз – до 956,4 млн. По состоянию на сентябрь 2003 года в мире насчитывалось 1,29 млрд. пользователей «трубок», а в начале 2011 года число абонентов мобильной связи превысило 5 миллиардов.

Изобретение токарно-винторезного станка

Русский механик Андрей Нартов разработал конструкцию первого в мире токарно-винторезного станка с механизированным суппортом и набором сменных зубчатых колёс (1738). Работая в артиллерийском ведомстве, Нартов создал новые станки, оригинальные запалы, предложил новые способы отливки пушек. Им был изобретен оригинальный оптический прицел. Значение изобретений Нартова было столь велико, что 2 мая 1746 года был издан указ о награждении А.К. Нартова за артиллерийские изобретения пятью тысячами рублями, кроме этого, ему отписали несколько деревень в Новгородском уезде.

Изобретение рентгена

В 1896 году мировая общественность ученых была взбудоражена сенсационным известием: некий немецкий профессор открыл лучи, которые были недоступны человеческому глазу, но они действовали на фотографическую пластинку. Звали этого профессора Вильгельм Конрад Рёнтген. Он сделал это удивительное открытие, изучая явления, происходящие в трубке Крукса (трубка из стекла с откаченным воздухом). В трубку с обоих концов впаяны металлические электроды, подводя к ним ток, в разряженном воздухе происходит электрический разряд. Из-за чего воздух в трубке и ее стенки светятся холодным светом.Открытие произошло так: однажды Рёнтген работал с трубкой Крукса, обернутой черной бумагой. После окончания работ, уходя из лаборатории, ученый погасил свет, но обнаружил, что забыл выключить индукционную катушку, которая была присоединена к круксовой трубке. И тут он заметил, что недалеко от трубки что-то светится неярким холодным светом - это был лист бумаги, покрытый платиносинеродистым барием (фосфоресцирующее вещество способное излучать собственный холодный свет). Трубка была завернута в светонепроницаемую бумагу, и катодные лучи не могли пройти сквозь нее. Значит, это новый вид лучей, пока еще абсолютно неизвестный науке? Значит, ученый на пороге крупного открытия?С того момента Рёнтген почти полтора года работал в лаборатории, не покидая ее. В то время он даже и не подозревал, что его открытие станет началом новой науки - ядерной физики. Профессор писал своему другу - зоологу Бовери: «Я открыл что-то интересное, но я еще не знаю, точны ли мои наблюдения». И вот в 1896 году общественность была взбудоражена сообщением об икс-лучах. Полтора года упорных исследований понадобилось Рёнтгену, чтобы доказать, что икс-лучи поглощаются предметами и обладают ионизирующей способностью. Он сделал открытие, что лучи свободно могут проходить через дерево, бумагу, металл и т. д., но удерживаются свинцом.Рёнтген описал сенсационный опыт: «Если держать между разрядной трубкой и экраном руку, то видны темные тени костей в слабых очертаниях тени самой руки». Это явилось первым рентгеноскопическим исследованием человеческого организма. Ученый описал действие лучей и предложил конструкцию рентгеновской трубки, которая дошла до наших дней, абсолютно не изменившись. Сам Рёнтген был человеком скромным и запрещал называть икс-лучи рентгеновскими, как теперь называет их весь мир.

Клятва Гиппократа

Каждый врач при получении диплома производит клятву Гиппократа.Гиппократ (около 460 лет – ок.370 до н.э.) – древнегреческий врач, реформатор античной медицины, материалист.

В трудах Гиппократа, ставших основой дальнейшего развития клинической медицины, отражены представления о целостности организма; индивидуальный подход к больному и его лечению; понятие об анамнезе; учения об этиологии, прогнозе, темпераментах.

С именем Гиппократа связано представление о высоком моральном облике и образце этического поведения врача.Заслугой Гиппократа было освобождение медицины от влияний жреческой, храмовой медицины и определение пути её самостоятельного развития.

Гиппократ учил, что врач должен лечить не болезнь, а больного.

Изобретение компаса

Компас, как и бумагу, еще в глубокой древности изобрели китайцы. В III веке до Р.Х. китайский философ Хэнь Фэй-цзы так описывалустройство современного ему компаса: он имел вид разливательной ложки из магнетита с тонким черенком и шарообразной, тщательно отполированной выпуклой частью. Этой выпуклой частью ложка устанавливалась на столь же тщательно отполированной медной или деревянной пластине, так что черенок не касался пластины, а свободно висел над ней, и при этом ложка легко могла вращаться вокруг оси своего выпуклого основания. На пластине были нанесены обозначения стран света в виде циклических зодиакальных знаков. Подтолкнув черенок ложки, ее приводили во вращательное движение. Успокоившись, компас указывал черенком (который играл роль магнитной стрелки) точно на юг. Таким был самый древний прибор для определения сторон света. В XI веке в Китае впервые появилась плавающая стрелка компаса, изготовленная из искусственного магнита. Обычно она делалась в форме рыбки. Эту рыбку опускали в сосуд с водой. Здесь она свободно плавала, указывая своей головой в ту сторону, где находился юг. Несколько разновидностей компаса придумал в том же XI веке китайский ученый Шэнь Гуа, который много работал над исследованием свойств магнитной стрелки. Он предлагал, например, намагнитить о природный магнит обычную швейную иглу, затем прикрепить ее с помощью воска в центре корпуса к свободно висящей шелковой нити. Этот компас указывал направление более точно, чем плавающий, так как испытывал гораздо меньшее сопротивление при своем повороте. Другая конструкция компаса, предложенная Шэнь Гуа, была еще ближе к современной: намагниченная иголка здесь насаживалась на шпильку. Во время своих опытов Шэнь Гуа установил, что стрелка компаса показывает не точно на юг, а с некоторым отклонением, и правильно объяснил причину этого явления тем, что магнитный и географический меридианы не совпадают между собой, а образуют угол. В начале XIII века «плавающая игла» стала известна европейцам. Поначалу компас состоял из намагниченной иголки и кусочка дерева (пробки), плававшего в сосуде с водой. Вскоре догадались закрывать этот сосуд стеклом, чтобы защитить поплавок от действия ветра. В середине XIV века придумали помещать магнитную стрелку на острие в середине бумажного круга (картушки). Затем итальянец Флавио Джойя усовершенствовал компас, снабдив его картушкой, разделенной на 16 частей (румбов) по четыре на каждую часть света. Это нехитрое приспособление стало большим шагом в усовершенствовании компаса. Позже круг был разделен на 32 равных сектора. В XVI веке для уменьшения воздействия качки стрелку стали крепить на кардановый подвес, а век спустя компас снабдили вращающейся линейкой с визирами на концах, что позволило точнее отсчитывать направления.

Первая звукозапись. Фоноаутограф.

Когда: 9 апреля 1860 года, найдена в 2008-м. Виновник события: Книгоиздатель и коммерсант Эдуард-Леон Скотт де Мартинвилль. Кого опередил: Томаса Эдисона с его фонографом (1877 год). Работа француза де Мартинвилля, автора первой звукозаписи, преследовала цель – понять, как устроен звук с точки зрения физики. Его прибор процарапывал кривые на бумаге, покрытой сажей. Способа прослушать такую запись не существовало, но изобретателю он и не был нужен: все выводы о природе звука Мартинвилль намеревался сделать, разглядывая кривые. В этом смысле прибор Эдисона был изощренней: музыку он умел и писать, и считывать – и именно от него справедливо отсчитывают историю звукозаписи, какой мы её знаем.

Переливание крови.

Идея непосредственного введения жидкости в кровоток возникла у английского врача-физиолога и анатома Вильяма Гарвея (1578-1657), который в 1628 году создал учение о системе кровообращения. Открытие В. Гарвея имело большое значение для деятельности английских ученых Оксфордского университета, основным вдохновителем которой был Роберт Бойль (1627-1691). В 1656 г. ученый, архитектор, астроном, один из основателей Английского Королевского научного общества, член Оксфордской группы Кристофер Рэн, соединяя гусиное перо с удаленным мочевым пузырем свиньи, переливал пиво, вино и опиум собакам. К.Рэн являлся одним из основоположников инфузионной терапии. В 1666 году анатом и врач Ричард Ловер (1631-1691), также являющийся членом Оксфордской группы, впервые произвел переливание крови у собак. Деятельность этих великих английских естествоиспытателей явилась стимулом для попыток переливания крови человеку. В 1667 году врачом Жаном-Батистом Дени (1640-1704) во Франции была предпринята первая попытка переливания крови от овцы обескровленному человеку. Им же были отмечены первые осложнения при переливании крови. Хирург М.Пурман в 1670 году решил провести опыт на самом себе, поручив одному из своих ассистентов ввести ему собственноручно составленную инфузионную смесь. Однако эти эксперименты не всегда заканчивались для больных и исследователей удачно, так как только в 1907 году Я.Янский впервые открыл четыре основные группы крови, а в 1940 году К. Ландштейнер и А.Виннер открыли новую систему групповых антигенов крови - резус. В России эта проблема также волновало многих естествоиспытателей. Поэтому в 1796 году Российская академия наук объявила конкурсную тему: «О химическом составе крови и возможности создать искусственный заменитель». За более чем 200 лет, прошедших с тех пор, никто не стал лауреатом этого конкурса, хотя определённые успехи в решении этой проблемы имеются. В России первые исследования по переливанию крови связано с именем Г.Хотовицкого, который в 1830 году предложил производить гемотрансфузию для спасения рожениц, погибающих от кровотечения. Далее, в 1847 году российский учёный И.М.Соколов произвел первое в мире переливание сыворотки человеческой крови. В 1874 году впервые в России доктором Н.И.Студенским было произведено внутриартериальное переливание крови. Следует отметить создание в 1926 году в Москве первого в мире Научно-исследовательского института переливания крови (ныне ПК ГНЦ РАМН). Но, тем не менее, первое переливание крови от человека человеку было произведено английским хирургом и акушером Джеймсом Блонделлом (1790-1877) в 1819 году.

Выдающиеся педагоги губернии

(11 (23) октября 1846, село Старое Тезиково Наровчатского уезда Пензенской губернии - 16 ноября 1924, Прага) - русский хоровой дирижёр, композитор и педагог. Заслуженный артист РСФСР (1921).

Организовал в 1880 году в Петербурге смешанный хор, обладавший обширным репертуаром (обработки народных песен, хоровая классика, сочинения современных композиторов) и высокой музыкальной культурой. В практике церковного пения Архангельский сделал нововведения, заменив в церковных хорах детские голоса мальчиков на женские голоса.

В историю музыки Архангельский вошел как реформатор хорового дела и выдающийся педагог. Что и стало основанием для присвоения имен Архангельского Пензенскому музыкальному колледжу в 2002 году.

(16 (28) января 1841, село Воскресеновка Пензенской губернии - 12 (25) мая 1911, Москва) - выдающийся русский историк и педагог. Академик (1900), почётный академик (1908) Петербургской Академии наук.

Автор множества научных работ, в том числе фундаментального «Полного курса русской истории», не утратившего своей актуальности в качестве учебного пособия и поныне. В своей научной работе, при рассмотрении русской истории, на первый план выдвигал политические и экономические события.

Был известен активной общественной позицией. Участвовал в работе Комиссии по пересмотру законов о печати и в совещаниях по проекту учреждения Государственной думы и её полномочий. Но отказался войти в Государственный Совет, поскольку не находил участие в совете «достаточно независимым для свободного… обсуждения возникающих вопросов государственной жизни».

11 октября 2008 года в Пензе, напротив здания Училища культуры и искусств, был установлен первый в России памятник В. О. Ключевскому.

(14 (26) июля 1831, Астрахань - 12 (24) января 1886, Симбирск) - государственный деятель, педагог. В основном известен, как отец основателя Советского государства Владимира Ильича Ленина. При этом оставалась в тени его собственная деятельность, направленная на достижение всеобщего, равного для всех национальностей образования. С Пензенской землей связано начало педагогической деятельности Ильи Ульянова, заступившего после университета на должность старшего учителя математики в высших классах Пензенского дворянского Института. Главные его же достижения связаны с деятельностью на посту инспектора и директора народных училищ Симбирской губернии. Благодаря его энергии городские думы и сельские общества увеличили отпуск средств на школьные нужды более чем в 15 раз. Было построено более 150 школьных зданий, а количество учащихся в них возросло до 20 тыс. человек. И это при том, что качество образования стало соответствовать принятым нормам, школы получили грамотных учителей и приемлемые для учебного процесса и проживания учителей здания.

Выдающиеся ученые губернии

Герой высоких широт

Бадигин Константин Сергеевич (29 ноября 1910 г., Пенза - 17 марта 1984, Москва) известный исследователь Арктики, капитан дальнего плавания. В 1937 году он стал капитаном исследовательского судна «Седов» и отвечал за успешный дрейф через Северный Ледовитый океан, продолжавшийся 812 дней. Ведя океанологические исследования в море Лаптевых, «Седов» задержался и не смог своевременно вернуться в порт. То же случилось и с ледокольными пароходами «Садко» и «Малыгин». Для взаимной помощи все три корабля соединились и попробовали пробиться сквозь замерзающее море, но были зажаты льдами. 153 раза седовцы переживали сжатия льдов. Легендарный дрейф «Седова» вписал ценнейший вклад в науку о Севере. За свой подвиг Константин Бадигин награжден орденом Героя Советского Союза.

Основоположник географии растительности

Бекетов Андрей Николаевич (26 ноября (8 декабря) 1825, с.Алферьевка, Пензенская губ. - 1 (14) июля 1902, Шахматове, Московская губ.) - русский ботаник, педагог, популяризатор и организатор науки. Брат известного химика Н.Н. Бекетова и дед поэта А. А.Блока.

Выдвинул представление о «биологических комплексах», как группах растений, распространяющихся под воздействием суммы внешних условий, к которым тот или иной вид растения приспособился в процессе своего исторического развития. Установил самостоятельный зональный подтип растительности «предстепь» (то есть лесостепь). Различал ботанический и географический аспекты геоботаники. Разрабатывал многие вопросы экологической географии растений: экологический вариант, влияние света на образование жизненных форм растений и др. Автор первого в России полного систематического учебника ботаники и учебника по географии растений.

- (1 января (13) 1827, Альфёрьевка (Новая Бекетовка), Пензенская губерния - 30 ноября (13 декабря) 1911, Санкт-Петербург) - один из основоположников физической химии и химической динамики, заложил основы принципа алюминотермии. Русский физико-химик, академик Петербургской АН (1886). Открыл вытеснение металлов из растворов их солей водородом под давлением и установил, что магний и цинк при высоких температурах вытесняют другие металлы из их солей. В 1859-1865 годах показал, что при высоких температурах алюминий восстанавливает металлы из их оксидов. Позднее эти опыты послужили отправной точкой для возникновения алюминотермии. Огромной заслугой Бекетова является развитие физической химии как самостоятельной научной и учебной дисциплины. По предложению Бекетова в Харьковском Императорском университете учреждено физико-химическое отделение, на котором наряду с чтением лекций был введён практикум по физической химии и проводились физико-химические исследования.

В борьбе со слепотой

Беллярминов Леонид Георгиевич (1859, Сердобский уезд Саратовской губернии, ныне Пен­зенской области - 1930, Ленинград) - создатель школы оф­тальмологов, доктор медицины, профессор. Много лет пре­подавал в Петербургской военно-медицинской академии. В 1893-1914 по инициативе Беллярминова были организованы «летучие глазные отряды» по борьбе со слепотой в России. Под его руководством выпущено более 250 научных работ. Леонид Беллярминов был соредактором коллективного ру­ководства «Глазные болезни». В течение 32 лет был предсе­дателем Петербургского, затем Ленинградского офтальмо­логического общества.

Рентгенолог на полях сражения

Белов Николай Петрович (19 декабря 1894, Нижний Ломов – 17 марта 1953, Пенза) – врач-рентгенолог. Окончил Петербургскую медико-хирургическую академию. Участник 1-й мировой, Гражданской, Великой Отечественной войн. В 1924 организовал и возглавил рентгенологический кабинет в пензенской больнице Красного Креста (ныне больница им. Семашко). В годы войны Николай Белов служил подполковником медицинской службы в госпиталях Западного, Сталинградского, Прибалтийского фронтов. Он одним из первых разработал методику операций перед экраном рентгеновской установки в полевых условиях. В послевоенное время Белов работал врачом-рентгенологом гарнизонного госпиталя. Награжден Орденом Отечественной войны 2-й степени, Орденом Красной Звезды.

(22 мая (3 июня) 1876, село Каменка, Нижнеломовский уезд, Пензенская губерния - 11 ноября, 1946 год, Москва) - русский и советский хирург, организатор здравоохранения, основоположник российской нейрохирургии. Николай Бурденко создал школу хирургов экспериментального направления, разработал методы лечения онкологии центральной и вегетативной нервной системы, патологии ликворообращения, мозгового кровообращения и др. Производил операции по лечению мозговых опухолей, которые до Бурденко насчитывались во всем мире единицами. Он впервые разработал более простые и оригинальные методы проведения этих операций, сделав их массовыми, разработал операции на твёрдой оболочке спинного мозга, производил пересадку участков нервов. Разработал бульботомию - операцию в верхнем отделе спинного мозга по рассечению перевозбуждённых в результате травмы мозга проводящих нервных путей.

Именем Владимирова

Владимиров Владимир Дмитриевич (1837 – 1903). Самой большой удачей для Пензы было назначение в 1874 году на должность старшего врача губернской больницы доктора медицины Владимира Дмитриевича Владимирова. В 1860 году он окончил Казанский университет. В 1872 году был утвержден в степени доктора медицины. В городе на Суре Владимиров впервые в России ввел практику учеников фельдшерской школы и выполнил внутрибрюшные и внутригрудные операции. Он получил всемирную известность своей операцией при туберкулезе голеностопного сустава и опухоли пятки. В 1885 году эта операция названа Владимирова-Микулича.

В космических лучах


Добротин Николай Алексеевич
(18 июня 1908, Н.Ломов - 2002, Санкт-Петербург) - российский физик. Совместно с Д.В. Скобельцыным и Г.Т. Зацепиным открыл (1949) и изучил электронно-ядерные ливни, вызываемые космическими лучами и ядерно-каскадный процесс (Государственная премия СССР, 1951), открыл асимметричные ливни. Установил характерную особенность множественной генерации вторичных частиц через образование и распад кластеров. Создатель Памирской высокогорной обсерватории по изучению космических лучей и Тань-Шанской обсерватории. Автор более 20 научных работ.

(25 июля1915 г., Большая Садовка Сосновоборского района Пензенской области – 2 октября 1990 г.) - математик, крупный советский геометр. В Пензенском педагогическом институте, возглавляя кафедру высшей математики, Егоров И.П. создал Пензенскую математическую школу по движениям в обобщённых пространствах. С 1960 года в институте функционировала аспирантура под его руководством. Более 70 научных работ учёного получили широкую известность и признание не только в СССР, но и за рубежом, вызвав появление новых исследований в Японии, Румынии, США и других странах.

Иван Петрович Егоров дважды избирался Депутатом Верховного Совета СССР (1962 – 1970), был членом постоянной комиссии Совета Союза Верховного Совета по делам молодежи, входил в Бюро Геометрического семинара при ВИНИТИ АН СССР (с 1963 года).

Основы здравоохранения

Еше Егор Богданович (1815 -1876). Ученик Н.И. Пирогова, по праву считается одним из основателей здравоохранения Пензенской губернии. В 1846-1855 годах он работает старшим врачом Пензенской больницы приказа общественного призрения, которая позже стала называться губернской земской, а потом - областной, Егор Богданович проводил операции, доступные только ведущим клиникам того времени. Он выступил одним из организаторов научно-медицинского общества.В 1847 году он вместе с ординатором А.И. Циммерманом внедрил в хирургическую практику эфирный наркоз. В Пензе опубликованы 5 отчётов о работе больницы и 100 научных статей.

Основатель клинической школы

Захарьин Григорий Антонович (1829, Пенза -1898, Москва) - выдающийся русский врач-терапевт, основатель московской клинической школы, почётный член Императорской Санкт-Петербургской Ака¬демии Наук (1885). Захарьин был одним из самых выдающихся клиницистов-практиков своего времени и внес огромный вклад в создание анамнестического метода исследования больных. Изложил свои приемы диагностики и взгляды на лечение в «Клинических лекциях», получивших широчайшую известность. Эти лекции выдержали много изданий, в том числе на английском, французском, немецком языках, и до сих пор считаются образцовыми. Методика исследования по Захарьину составляла многоступенчатый расспрос врачом больного, «возведенный на высоту искусства» (А. Юшар), и позволявший составить представление о течение болезни и факторах риска. Имя Г.А. Захарьина носит Городская клиническая больница скорой помощи в Пензе.

Четвертое состояние вещества

Борис Борисович Кадомцев (9 ноября 1928, Пенза – 19 августа 1998) - российский учёный-физик. Основные исследования посвящены физике плазмы и проблеме управляемого термоядерного синтеза. Предсказал некоторые виды неустойчивости плазмы и заложил основы теории явлений переноса (диффузии и теплопроводности) в турбулентной плазме. Открыл неустойчивость плазмы на так называемых «запертых частицах». Дал количественное объяснение явления аномального поведения плазмы в магнитном поле. Ряд работ посвящен проблеме термоизоляции плазмы в тороидальных магнитных камерах - токамаках.

Разработал теорию слабой турбулентности, учитывающей рассеяние волн на частицах и так называемые процессы распада волн. Создал теорию самоорганизации плазмы в токамаке.

(19 июля 1849, Беково - 6 октября 1908) - русский врач, окулист. В 1873 стал доктором медицины за диссертацию «Объективное цветоощущение на периферических частях сетчатки». В 1874 совместно с немецким ученым Лебером опубликовал работу «О проникновении жидкостей через роговую оболочку». Крюков обнародовал 38 самостоятельных работ на русском и немецком языках и в течение многих лет в прекрасных рефератах знакомил иностранную литературу с русскими работами по офтальмологии. Кроме того, он был известен как отличный практик: лечебница глазных болезней, перешедшая к нему от доктора Воинова, которой он заведовал, пользовалась в своё время широкой известностью. Издал «Шрифты и таблицы для исследования зрения» (1882), «Курс глазных болезней» (1892, выдержал 12 изданий). Особенно значительный вклад внес Крюков в изучение глаукомы.

Знаток человеческого мышления

Ладыгина-Котс Надежда Николаевна (6 мая 1889 г. Пенза – 3 сентября 1963, Москва) советский зоопсихолог, доктор биологических наук, заслуженный деятель науки РСФСР (1960). Окончила с золотой медалью 1-ю Пензенскую женскую гимназию, Московские высшие женские курсы (1916) и Московский вуз (1917). Работала в Дарвинском музее старшим научным сотрудником сектора психологии Института философии Академии наук СССР, возглавляла секцию Всесоюзного общества психологов, была представителем СССР в секции психологии животных Международного объединения биологических наук. Идеи Ладыгиной-Котс сыграли важную роль в изучении человеческой психики. Ею разработаны оригинальные методики исследований, получившие широкое признание в России и за рубежом.

Изучая историю родного края

Лебедев Виталий Иванович (р. 28 февраля 1932 года, Пенза - 1995, Пенза) - историк. В 1967 году защитил диссертацию на соискание звания кандидата исторических наук, в 1985 стал доцентом. С 1992 года Виталий Лебедев - профессор ПГПИ. Он внес весомый вклад в изучение засечных памятников русского фортификационного искусства 16-17 веков. Профессор Лебедев проводил полевые исследования в Пензенской, Рязанской, Тамбовской, Нижегородской, Ульяновской и других областях, а также в Мордовской, Татарской и Чувашской республиках. Принимал участие в создании «Пензенской энциклопедии». Ученый опубликовал более 100 научных работ, в том числе 5 монографий. В память историка с 2000 года проводятся научные Лебедевские чтения.

Матвеев Борис Павлович (родился 1934, Керенск (в наст. Вадинск)) – основатель онкоурологического направления в РФ, основатель онкоурологического отделения в Научном центре им. Н.Н. Блохина. Заслуженный деятель науки РФ, президент Всероссийского общества онкоурологов, доктор медицинских наук, профессор, заведующий отделением урологии РОНЦ им. Н.И. Блохина РАМН. Автор многих медицинских трудов «Клиническая онкоурология», Москва, 2003, «Диагностика и лечение онкоурологических заболеваний» 1987.

Благодаря деятельности Матвеева, достигнуты большие успехи в лечении таких заболеваний как рак мочевого пузыря, рак простаты и многих других.

Немчинов Василий Сергеевич (2 января 1894, с. Грабово Пензенской губернии – 5 ноября 1964, Москва) – экономист, статистик, академик Академии наук СССР. Под его руководством в 1929–1931 гг. были произведены первые сплошные обследования совхозов и колхозов. Автор метода инструментального измерения урожайности путем небольшого числа выборочных проб – «метровок», сменившего приёмы субъективной оценки урожайности.

Автор схемы Немчинова – Перегудова в математической статистике. Один из основоположников экономико-математической статистике. Один из основоположников экономико-математического направления отечественной экономической науки. Организовал первую в стране Лабораторию по применению статистических и математических методов в экономических исследованиях и планировании.

(р. 14 марта 1914 г. в с. Чернышево Чембарского уезда Пензенской губернии) российский почвовед-агрохимик, академик ВЛСХНИЛ (с 1967), ее вице-президент (с 1969 г.). С 1969 г. – директор Всесоюзного института удобрений и агропочвоведения. Основные научные работы относятся к агрономическому почвоведению, земледелию и агрохимии. Провел сравнительные исследования черноземов и лесостепных почв. Установил, что без применения минеральных удобрений содержание перегноя в почвах на пашне лесостепной зоны уменьшается, а под лиственными лесами происходит накопление перегноя. Показал эволюцию лесостепных почв и их агрохимическую природу, предложил методы повышения их плодородия. Разрабатывал проблемы химизации сельского хозяйства. Изучал эффективность применения минеральных удобрений в различных почвенно-климатических зонах страны. Руководитель географической сети опытов по применению удобрений в СССР. Автор первого учебника по геологии для сельскохозяйственных вузов.

Пустыгин Михаил Андреевич (родился 16.11.1906, деревня Полянщина, ныне село Трескино Колышлейского района), доктор технических наук (1946), профессор (1949), заслуженный деятель науки и техники РСФСР (1968). В 1946 в соавторстве с И.С. Ивановым создает конструкцию первого советского самоходного комбайна (двигался со скоростью от 2 га посевов). За эту работу был удостоен звания лауреата Сталинской премии (1947). Орден Трудового Красного Знамени (1952), Октябрьской Революции (1971), Орден Почета (1996).

Рамеев Башир Искандарович (1 мая 1918 - 16 мая 1994) – первый советский конструктор вычислительной техники, доктор технических наук. Будучи главным конструктором, изобретатель вместе со своим коллективом создал и запустил в производство полтора десятка универсальных и специализированных вычислительных машин и более ста различных периферийных устройств. В 1940 году Башир оказался в Москве, где устроился техником в Центральный научно-исследовательский институт связи. Работая в институте, он сделал два изобретения: предложил способ обнаружения с самолета затемненных объектов - по инфракрасному излучению, проходящему через зашторенные окна, а также создал релейное устройство для включения громкоговорителей в случае воздушной тревоги. Участник Великой Отечественной войны (войска связи). 1944 году его отозвали из армии и отправили на работу в ЦНИИ-108, которым руководил академик А. И. Берг. Работа была связана с проектированием и расчетом электронных элементов радиолокационных устройств. В декабре 1948 года Б. И. Рамеев и И. С. Брук подготовили и послали заявку на изобретение "Автоматическая цифровая вычислительная машина" и получили авторское свидетельство № 10475 с приоритетом от 4 декабря 1948 года - первое в нашей стране свидетельство по электронным цифровым вычислительным машинам. Именно в этот день отмечается в нашей стране День информатики. В стенах Пензенского НИИММ, ныне НПП «Рубин», одним из основателей которого является Башир Рамеев, им предложена и воплощена концепция ряда ЭВМ второго поколения («Урал-11», «Урал-16»), получившая развитие в ЕС ЭВМ. Уже первый "Урал", выпущенный в Пензе в 1957 году, стал "рабочей лошадью" во многих вычислительных центрах страны. Транзисторные "Уралы" - "Урал-П", "Урал-14" и "Урал-16" - в 60-70-е годы работали в каждом втором вычислительном центре и многих других организациях Советского Союза. Автор ряда монографий и более 100 изобретений. Награжден Орденом Трудового Красного Знамени, золотой медалью ВДНХ СССР, Лауреат Сталинской премии. На здании НПП «Рубин» установлена мемориальная доска Баширу Искандаровичу Рамееву.

Первая антисептика

(1834-1897). Упрочению репутации Пензы как одного из научных центров российской провинции содействовал доктор медицины Эрнест Карлович Розенталь, который в 1864 году занял пост старшего врача Пензенской губернской земской больницы. В 1866 году появились его статьи «К статистике каменной болезни, эндемически распространенной в Пензенской губернии», «Об устройстве и содержании больниц в Западной Европе». В 1870 году публикуется статья «Смертность после операции в больнице Пензенского губернского земства». Большим успехом пензенских хирургов Э.К. Розенталя, Д.Я. Диотропова, Н.Г. Славинского, И.И. Мальницкого были операции по камнесечению, методика проведения которых получила освещение в статье Э.К. Розенталя «Статистика 150 камнесечений». В 1867 году, по примеру английского хирурга Д.Листера, он ввел антисептику.

Новатор Пензенской медицины

Савков Николай Мокиевич (1878 - 1938, Пенза) - известный пензенский хирург, автор 35 научных работ, публиковавшихся в т.ч. в Берлине и Париже. В Пензе развил желудочную хирургию. В 1929 г. сделал первое переливание крови. В 1931 открыл пункт скорой помощи. А в 1933 на общественных началах создал раковый пункт, положивший начало областному онкологическому диспансеру.

Укрепляя оборону страны

Сафронов Павел Васильевич (21 января 1914, с. Оленевка Пензенской губернии - 5 мая 1993, Пенза), инженер-конструктор, изобретатель. В 1931 окончил школу ФЗУ, работал на Пензенском заводе имени Фрунзе слесарем, бригадиром, мастером. В 1940-м, по окончанию Ленинградского военно-механического института, вернулся на завод. В 1942 изобрел высоконадежный взрыватель, модернизировал несколько видов оборонной продукции. В 1947 за создание нового изделия (совместно с А.Д.Музыкиным и Г.А.Окунем) ему была присуждена Сталинская премия. В 1957-1963 гг. - гл. конструктор Пензенского СНХ, один из организаторов НИИ электромеханических приборов, где работал заместителем директора и директором с 1968 по 1971. В 1971-1974 гг. зам. начальника конструкторского отдела объединения «Эра».

(7 мая 1873 - 10 февраля 1942, Пенза) - ботаник, исследователь природы Среднего Поволжья, Пензенской области, Средней Азии и Казахстана, один из основоположников природоохранного дела в России. В 1919 году добился организации в губернии заповедника- «Попереченская степь» (по времени возникновения это был третий заповедник в России). В Пензе Иван Спрыгин организовал естественно-исторический музей, ботанический сад, гербарий. Работал над вопросами классификации растительных степных сообществ, изменчивости растений, их полиморфизма, влияния на процессы видообразования. Разработал концепцию реликтовых растений Приволжской возвышенности, а также методику составления карт восстановленного (существовавшего до начала земледелия) растительного покрова. Стал первым директором Средневолжского заповедника, который ныне носит его имя. Была произведена полная инвентаризация флоры заповедника, открыто 5 новых видов растений. Присуждается премия имени И.И. Спрыгина за лучшие работы в области теории и практики заповедного дела и охраны биологического разнообразия.

Станкевич Аполлинарий Осипович (1834-15.09.1892, Городище), лесничий Городищенского уезда Пензенской губернии. Из кратких газетных сообщений известно о его работе с лета 1881 над созданием летательного аппарата. В 1883 его модель была закончена и сделана попытка испытать её в действии.
Однако технические неполадки в конструкции оттянули время старта, а резко испортившаяся погода повредила и сам аппарат. О результатах его трудов 2.3.1885 года была публикация в «Петербургской газете», где говорилось: «Станкевич, служащий в Пензенской губернии, изобрел способ свободного плавания в воздушном пространстве», демонстрировал свой аппарат – «Птицу громадных размеров с бумажными крыльями». Проект был рассмотрен в военном ведомстве и получил положительный отзыв. В дальнейшем проект утонул в бюрократических архивах, а имя самого автора осталось в забвении.

Обгоняя время.

Владимир Евграфович Татлин (28 декабря 1885, Киев - 31 мая 1953, Москва) - живописец, график, дизайнер и художник театра. Видный деятель конструктивизма и футуризма. С 1905 по 1910 годы обучался в Пензенском художественном училище. В честь Татлина в Пензе назван новый бизнес-инкубатор смешанного типа. Владимир Татлин стал знаменит проектами, которые, к сожалению, не были реализованы. Самым известным проектом является винтовая башня Татлина. Основная идея памятника сложилась на основе органического синтеза архитектурных, скульптурных и живописных принципов. Проект памятника представляет собой три больших стеклянных помещения, возведенных по сложной системе вертикальных стержней и спиралей. Помещения эти расположены одно над другим и заключены в различные гармонически связанные формы.

Рентген на Пензенской земле

Трофимов Владимир Кириллович (1872 - 1944) - известный врач. С 1905 г. работал в Пензе. С 1912 г. - главный врач Пензенской общины сестер милосердия Красного Креста и помощник Пензенского губернского врачебного инспектора. После революции - организатор лечебного дела в городе. С 1923 г. - в эмиграции.

Ему принадлежит приоритет операций на почках, мочеточнике, желчных путях, при блуждающей почке. Ввел в практику оперативные вмешательства при желчнокаменной болезни. Одним из первых поставил вопрос о борьбе с хирургическим туберкулезом. В 1908 г. вместе с другим известным пензенским врачом Д.С. Щеткиным организовал в Пензе рентгеновский кабинет и стал первым в Пензе врачом-рентгенологом.

(27 (15) февраля 1875, с. Михайловка Протасовскогй волости Пензенской губернии – 30 октября 1956, Одесса) – офтальмолог, лауреат Государственной премии СССР, академик АМН СССР (1944) и АН УССР (1939), Герой Социалистического Труда. Особой известью пользуется разработанный Филатовым метод пересадки роговицы, при котором пересадочным материалом является донорская роговица. В области восстановительной хирургии предложил метод пересадки кожи при помощи так называемого мигрирующего круглого кожного стебля. Разработал и ввел в практику хирургической офтальмологии методы пересаживания роговицы глаз трупов.

Предложил собственные методы лечения глаукомы, трахомы, травматизма в офтальмологии и т.п.; изобрел много оригинальных офтальмологических инструментов; создал учение о биогенных стимуляторах и разработал методы тканевой терапии (1933), которая широко применяется в медицине и ветеринарии. В 1951 ему была присуждена большая золотая медаль им. Мечникова.

Юрьев Василий Яковлевич (21.02.1879, с. Ивановская Вирга Пензенской губернии – 08.02.1962) – селекционер, дважды Герой Социалистического Труда (1954, 1959), действительный член Украинской Академии Наук (1945), почетный член ВАСХНИЛ (1947). Основным направлением в селекционной работе В.Я. Юрьева было создание высокоурожайных сортов озимой и яровой пшеницы, ячменя, овса, кукурузы. В 1946 г. по инициативе В.Я. Юрьева в Харькове организуется Институт генетики и селекции Академии Наук Украины, который он возглавлял в течение 10 лет. Из-под пера ученого вышло более 100 научных работ. В 1962 г. его имя присвоено Украинскому научно-исследовательскому институту растениеводства, селекции и генетики. В 1965 г. Академия Наук Украины учредила премию им. В.Я. Юрьева за достижения в области биологии.

Выдающиеся изобретатели губернии

(1910-1934) стратонавт, физик, третий член экипажа стратостата «Осоавиахим-1», достигшего рекордной высоты – 22 км. Погиб при его падении. Детские и юношеские годы провел в Пензе. Учился в школе им. Белинского, которую окончил в 1926, в Ленинградском физико-техническом институте и в Московском институте им. Баумана. Был учеником академика А.Ф. Иоффе. С 1932 доцент Ленинградского физико-технического института. Одним из первых ученых приступил к исследованию космических лучей. Создал специальный прибор, который испытал во время полета на стратостате «Осоавиахим-1». В 1995 администрация Классической гимназии №1 им. В.Г. Белинского учредила премию им. И.Д. Усыскина в области физико-математических наук гимназистам по итогам года.

Чернов Яко в (начало 1800-х, деревня Бутурлинка Петровского уезда Саратовской губернии, ныне Шемышейского района Пензенской области), крестьянин, химик-самоучка, кустарь, основатель карандашного промысла в крае (1860-е годы). Плотничал, бондарничал. Изготовлял серные спички. «Случайно разломившийся карандаш навел его на мысль домашнего приготовления их, как более выгодного промысла, чем спички». Опытным путем добился их удовлетворительного качества. Научил изготовлению карандашей односельчан, организовал поставку товара в Москву и другие города.

(1847-1894, д. Жадовка Сердобского уезда Саратовской губернии, ныне с. Яблочково Сердобского р-на Пензенской обл.). Русский изобретатель в области электротехники, военный инженер, предприниматель. Основное изобретение – дуговая лампа без регулятора. «Электрическая свеча», «свеча Яблочкова», запатентованная 23.3.1876, произвела коренные изменения в электротехнике. Триумфальная демонстрация «свечи Яблочкова» на Парижской всемирной выставке 1878 и создание синдиката по эксплуатации патентов Яблочкова привели к широкому применению электрического освещения во всем мире.

7 февраля 1832 года – Николай Лобаческий представляет Академии наук первый труд по неевклидовой геометрии. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще. Замечательное приложение геометрия Лобачевского нашла в общей теории относительности. Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается возможным, что при определённых условиях пространство имеет геометрию Лобачевского. Таким образом, предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

8 февраля 1724 года – (28 января по старому стилю) Указом правительствующего Сената по распоряжению Петра I в России была основана Академия наук. В 1925 году она была переименована в Академию наук СССР, а в 1991 году - в Российскую Академию наук. 7 июня 1999 года Указом президента Российской Федерации был установлен День российской науки с датой празднования 8 февраля. В Указе говорится, что праздник был установлен «учитывая выдающуюся роль отечественной науки в развитии государства и общества, следуя историческим традициям и в ознаменование 275-летия со дня основания в России Академии наук».

8 февраля 1929 года – советский авиаконструктор Николай Ильич Камов дает созданному ему летательному аппарату название «вертолет». Николай Камов вместе с Николаем Скржинским создал первый советский автожир Каскр-1 «Красный инженер». В 1935 под руководством Камова был создан боевой автожир А-7, использовавшийся во время Великой Отечественной войны. В 1940 году Камов стал главным конструктором КБ по вертолётостроению. Под руководством Камова были созданы вертолёты Ка-8 (1948), Ка-10 (1953), Ка-15 (1956), Ка-18 (1960), Ка-25 (1968), Ка-26 (1967), винтокрыл Ка-22 (1964), аэросани Север-2 и Ка-30, глиссер.

12 февраля 1941 года - день рождения пенициллина. Препарата, позволившего лечить заболевания, ранее считавшиеся неизлечимыми, и спасшего жизни тысячам людей во время войны. В СССР первые образцы пенициллина получили в 1942 году микробиологи 3. В. Ермольева и Т. И. Балезина. Зинаида Виссарионовна Ермольева активно участвовала в организации промышленного производства пенициллина. Созданный ею препарат пенициллин-крустозин ВИ ЭМ был получен из штамма гриба вида Penicillium crustosum. Пенициллин применяется для лечения крупозной и очаговой пневмонии, менингита, ангины, гнойных инфекций кожи, мягких тканей и слизистых оболочек, дифтерии, скарлатины, сибирской язвы, сифилиса и др.

22 февраля 1714 года - по указу Петра I в Санкт-Петербурге основан Аптекарский огород с научными, учебными и практическими целями. Главная цель сада состояла в разведении лекарственных трав. Постепенно территория сада расширялась за счёт покупки и присоединения к нему отдельных участков. В 1823 году Аптекарский сад был реорганизован в ботанический; а с 1934 года стал научным отделением Ботанического института им. Комарова РАН. Сегодня площадь сада составляет 22,6 га, включая 16 га парка-дендрария. Коллекция насчитывает свыше 80 тысяч образцов. Экспозиция музея посвящена растительности Земли, истории и эволюции растений, растительным ресурсам России, взаимоотношениям растений и человека.

7 марта 1899 года - открывается первая в России станция «скорой помощи». До этого времени пострадавших, которые обычно подбирались полицейскими, пожарными, а иногда и извозчиками, доставляли в приемные покои при полицейских домах. Необходимый в таких случаях медицинский осмотр на месте происшествия отсутствовал. Часто люди с тяжёлыми телесными повреждениями часами находились без надлежащей помощи в полицейских домах. Сама жизнь требовала создания карет скорой помощи. Первые 5 станций Скорой помощи были открыты 7 марта 1899 года по инициативе доктора-хирурга Н.А.Вельяминова в городе Санкт-Петербурге.

11 марта 1931 года - в СССР введён физкультурный комплекс ГТО (Готов к труду и обороне). ГТО - программа физкультурной подготовки в общеобразовательных, профессиональных и спортивных организациях в СССР, основополагающая в единой и поддерживаемой государством системе патриотического воспитания молодежи. Существовала с 1931 по 1991 гг. Охватывала население в возрасте от 10 до 60 лет. ГТО объективно способствовал физическому развитию и здоровью населения страны.

19 марта 1869 года – на заседании Русского химического общества Н.А. Меншуткиным от имени Д. И. Менделеева сделано сообщение об открытии соотношения между свойствами элементов и их атомными весами. Было положено начало разработке Периодической системе химических элементов (таблица Менделеева). Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях. Прогнозирующая роль периоди¬ческой системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов. Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

Март - апрель 1866 года - выход в свет книги И. М. Сеченова «Рефлексы головного мозга». Одной из знаковых книг в истории мировой научной мысли. В ней Сеченов обосновал рефлекторную природу сознательной и бессознательной деятельности, доказав, что в основе всех психических явлений лежат физиологические процессы, которые могут быть изучены объективными методами. «Гениальный взмах сеченовской мысли», - так назвал великий русский ученый Павлов эту вершину научного творчества «отца русской физиологии.

1 апреля 1946 года – в Советском Союзе образуется ядерный центр «Арзамас-16». Теперь - федеральный ядерный центр «Российский научно-исследовательский институт экспериментальной физики». Первоначально у центра была конкретная задача - создание атомной бомбы. Но в дальнейшем в нем начали вестись и разработки, связанные с «мирным атомом». В 1962 году была решена уникальная задача зажигания и горения термоядерного горючего при отсутствии делящихся материалов. Центр расширяет сферу исследований и разработок и быстро осваивает новые области высоких технологий, получает научные результаты мирового уровня, проводит уникальные фундаментальные и прикладные исследования.

26 апреля 1755 года – открылся Московский университет в здании Аптекарского дома у Воскресенских ворот на месте нынешнего Исторического музея на Красной площади. Создание университета было предложено И. И. Шуваловым и М. В. Ломоносовым. Декрет о создании университета был подписан императрицей Елизаветой Петровной 12 (23) января 1755 года. Хотя официально День основания первого российского университета, а заодно и День всех российских студентов, празднуется в знаменитый Татьянин день (день подписания указа о создании), первая лекция в первом российском вузе была прочитана именно 26 апреля.

2 июня 1864 года - в Москве открыт первый в России зоологический сад. Вопреки распространенному мнению, зоосады или зоопарки предназначены не только для демонстрации животных горожанам, но и имеют важное научное значение. Изучение биологии и психологии своих коллекций, а также сохранение видов и их воспроизводство с последующей реинтродукцией в естественные местообитания, помогающие восстановить и сохранить вымирающих представителей животного мира в дикой природе. Пензенский зоопарк имеет одну из богатейших в России историю. Хотя он открыт в 1981 году, но фактически существовал с середины XIX века как Архиерейский сад. Является на сегодняшний день единственным, где имеется положительный опыт по выращиванию птенцов дрофы, одной из редчайших степных птиц, которая на воле почти полностью исчезла.

5 июня 1744 года - в Петербурге основана Порцелиновая мануфактура - первое в России и одно из старейших в Европе фарфоровых производств. С 1925 года - Ленинградский фарфоровый завод, а с 2005 снова Императорский фарфоровый завод. Создателем русского фарфора явился сподвижник Ломоносова Дмитрий Иванович Виноградов. В скором времени русский фарфор стал широко известен в Европе и, благодаря своему высокому качеству, смог соперничать со знаменитым саксонским фарфором.

8 июня 1761 года - во время проводимых опытов Михаил Ломоносов обнаружил атмосферу планеты Венера. А через 200 лет, 17 августа 1970 года, состоялся запуск советского аппарата Венера-7, первого успешно передавшего данные с поверхности другой планеты - Венеры.

8 июня 1843 года - начато строительство Петербург-Московской (впоследствии Николаевской, а затем Октябрьской) дороги - первой двухпутной железной дороги в стране. Движение было открыто в 1851 году. И хотя первоначальные объемы грузоперевозок были незначительны (0,4 млн. т. в сравнении с 1,3 млн. т. привозимых в Петербург водными путями) очень скоро экономическая эффективность железнодорожного сообщения стала очевидной. К концу века железные дороги стали одним из основных факторов, определявших бурный экономический рост в стране.

17 июня 1955 года – состоялся первый полет ТУ-104. Это первый в СССР, и четвертый в мире поднявшийся в воздух реактивный пассажирский самолёт. Сконструирован в КБ Туполева, изготовлен на Харьковском авиазаводе. ТУ-104 эксплуатировались вплоть до 1979 г. Внедрение и освоение нового самолёта потребовало перестройки всей аэродромной структуры. Именно с появлением на трассах Ту-104 стали широко внедряться спецавтомобили - мощные заправщики, тягачи, машины для заправки водой, багажные машины, наконец - самоходные трапы. В аэропортах начала работать привычная сейчас система оформления билетов, регистрации багажа, появились автобусы для пассажиров. На Ту-104 рез/aко возрос уровень комфорта/для пассажиров, по сравнению с поршневыми и турбовинтовыми машинами.

19 июня 1919 года – в разгар гражданской войны, по инициативе Академии Наук создается Государственный гидрологический институт. Учреждение создается с целью всестороннего изучения природных вод, разработки методов гидрологических исследований, расчётов и прогнозов, решения теоретических проблем гидрологии, обеспечения отраслей экономики гидрологической информацией и продукцией. ГГИ сегодня даёт оценку и прогноз состояния и рационального использования водных ресурсов.

3 июля 1835 года – заложено главное здание Пулковской обсерватории на Пулковской горе. На сегодняшний день научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений. Пулковская обсерватория включена в список объектов Всемирного наследия ЮНЕСКО.

5 июля 2000 года – c космодрома Байконур стартовала усовершенствованная трехступенчатая ракета-носитель «Протон-К», которая вывела на орбиту спутник «Космос» для нужд Минобороны России. Аналогичная ракета-носитель 12 июля вывела на Международную космическую станцию российский служебный модуль «Звезда».

6 июля 1885 года – Луи Пастер успешно испытал вакцину против бешенства на мальчике, которого укусила бешеная собака. 9-летний Жозеф Мейстер стал первым человеком, выжившим после заражения бешенством, и на всю жизнь сохранил благодарность своему спасителю, до конца своих дней проработав сторожем в Институте Пастера и ухаживая за могилой ученого. После вторжения гитлеровских войск во Францию в 1940 Мейстер предпочел покончить с собой, чем позволить нацистскиммародерам надругаться над могилой Пастера.

7 июля 1932 года – Ленинградский научно-исследовательский институт молочной промышленности впервые в стране разработал способ переработки молока в порошок. Массовое производство этого продукта явилось большим вкладом в дело продовольственного обеспечения населения страны.

8 июля 2000 года – группа ученых во главе с доктором Марией Макдугал из американского научно-исследовательского центра университета в Сан-Антонио (штат Техас) объявила о том, что им с помощью генной инженерии удалось создать человеческий зуб, правда, пока лишь в лаборатории. «Мы обнаружили новые гены, которые расположены в четвертой хромосоме и отвечают за нормальное развитие зубов», - сказала Макдугал. Ученые долгое время исследовали специализированные клетки, формирующие зубы человека и животных и производящие такие ткани как дентин и эмаль, надеясь понять процесс формирования зубной ткани и те явления, которые ведут к потере зуба. Оказалось, что некоторые из хранителей наследственной информации, находящиеся в этих клетках, «работают» только в период формирования зуба, а потом «отключаются». Если гены снова «включить», на месте старого вырастет новый зуб. «Мы считаем, что наша работа положит начало новому поколению зубной хирургии: со временем лишившийся зуба сможет сам вырастить у себя во рту новый или пересадить себе донорский. Причем, это не вызовет реакцию отторжения», - утверждала доктор Макдугл.

11 июля 1874 года - Александр Николаевич Лодыгин получил привилегию № 1619 на лампу накаливания. Его изобретение было запатентовано и в нескольких европейских странах, Петербургская АН присудила ему в этом году Ломоносовскую премию, а в конце года было создано «Товарищество электрического освещения А. Н. Лодыгин и Ко».

12 июля 1937 года – cтартовал беспосадочный перелет Москва - Северный полюс - США. Экипаж самолета АНТ-25 в составе летчиков М. Громова, А. Юмашева и штурмана С. Данилина приземлился че¬рез 62 часа 17 минут в Сан-Джасинто на границе с Мексикой, установив новый мировой рекорд дальности полета по прямой линии. Экипаж мог продолжать полет и дальше, но не было соглашения на пересечение американо-мексиканской границы.

13 июля 1882 года – в Москве начал действовать телефон. В день открытия было всего 26 абонентов. Станцию построило международное общество телефонов «Белла».

15 июля 2001 года – академик Валериан Соболев объявил о фундаментальных открытиях, которые сделали российские ученые-энергетики. Экспериментально открыт особый электрохимический процесс (ученые назвали его «процесс обеднения»), в котором продуктом являются высокотемпературные материалы в новом состоянии. Благодаря открытию новых источников энергии будут разрабатываться источники тока бытового и промышленного назначения, которые смогут работать непрерывно, производя электрическую энергию без использования каких-либо видов топлива и загрязнения окружающей среды. На основе «процесса обеднения» будут разработаны новейшие технологии получения сверхпрочных новых материалов для авто-, авиа-, ракето- и машиностроения, в строительстве.

16 июля 1896 года - первый русский автомобиль был представлен публике на Всероссийской промышленно-художественной выставке в Нижнем Новгороде, за рулем которого были его создатели - отставной лейтенант русского военно-морского флота Евгений Яковлев и хозяин каретных мастерских Петр Фрезе.

7 августа 1907 года - русский физик Б. Розинг получил патент за изобретение первой системы получения телевизионного изображения. Розинг изобрёл первый механизм воспроизведения телевизионного изображения, использовав систему развёртки (построчной передачи) в передающем приборе и электронно-лучевую трубку в приёмном аппарате, то есть впервые «сформулировал» основной принцип устройства и работы современного телевидения

26 августа 1770 года – в «Трудах» Вольного экономического общества появилась первая научная статья на тему картофеля «Примечания о картофеле». Впервые название картофель ввёл в русскую речь учёный-агроном Андрей Тимофеевич Болотов, который первым в России приступил к выращиванию культуры на огороде (а не на клумбах), положив тем самым начало массовому распространению на Руси «второго хлеба».

14 сентября 1896 года - по инициативе Петра Францевича Лесгафта в Петербурге открылись Курсы воспитательниц и руководительниц физического воспитания (ныне Институт физической культуры им. П. Ф. Лесгафта) - прообраза современных высших учебных заведений физической культуры. Ныне это - Санкт-Петербургский государственный университет физической культуры имени П. Ф. Лесгафта. Именно с этого момента ведет свое начало регулярное преподавание физической культуры в учебных заведениях России. Любопытно, что в отличие от всех предыдущих инноваций в российском образовании, эта первоначально коснулась не мужских, а женских учебных заведений.

20 сентября 1878 года - в Петербурге открылись Высшие Бестужевские курсы - первый в России женский университет. До той поры русские женщины могли получать образование лишь за рубежом. Именно «необходимостью действенных мер для отвлечения русских женщин от обучения в заграничных университетах» аргументировало русское правительство открытие таких курсов. Названы они по фамилии учредителя и первого директора профессора К. Н. Бестужева-Рюмина. Всего за 32 выпуска (первый выпуск был в 1882 году, а 32-ой - в 1916) Бестужевские курсы окончило около 7000 человек, а общее число обучавшихся - включая тех, кто по разным причинам не смог закончить обучения - превысило 10 тысяч. Курсы имели три отделения: словесно-историческое, физико-математическое и специально-математическое (последние два изначально различались только со второго курса и впоследствии были объединены), а в 1906 году было открыто юридическое отделение. Среди преподавателей курсов был цвет российской науки - А. М. Бутлеров, Д. И. Менделеев, Л. А. Орбели, И. М. Сеченов. В 1918 году Бестужевские курсы были преобразованы в Третий Петроградский университет, включённый в сентябре 1919 года в состав Петроградского государственного университета.

1 октября 1984 года - в Куанде (на трассе БАМа) состоялась укладка последнего, «золотого» звена магистрали. БАМ - одна из крупнейших железнодорожных магистралей в мире. Основной путь Тайшет - Советская Гавань строился с большими перерывами с 1938 года по 1984. Жизгненную важность подобной транспортной артерии для страны осознали давно. В 1888 году в Русском техническом обществе обсуждался проект постройки тихоокеанской железной дороги через северную оконечность Байкала. Но на тот момент проект был признан технически невыполнимым. Байкало-Амурская магистраль дала толчок развитию ряда производств, а также играет значительную геополитическую роль, сшив стальными стежками наши необъятные пространства.

4 октября 1957 года - в СССР произведён запуск первого искусственного спутника Земли. Спутник-1 был запущен на орбиту в СССР 4 октября 1957 года в 19:28:34 по Гринвичу. Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (получившего впоследствии открытое наименование космодром Байконур), на ракете-носителе «Спутник» (Р-7). Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С. П. Королёвым работали ученые М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко, В. И. Лапко, Б. С. Чекунов, А. В. Бухтияров и многие другие. Дата запуска считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

Это один из тех субъективных список, с которым некоторые люди согласятся, а некоторые будут против. Я понимаю, ведь все великие и значимые изобретения не поместятся в один рейтинг. Я выбрала те, что, по моему мнению, самые значимые для современного мира. Не стесняйтесь высказывать своё мысли в комментариях.

Современная сантехника

Сантехнические устройства и коммуникации используют для удаления сточных вод и обеспечения зданий и сооружений чистой водой. В местах компактного проживания людей, например, квартиры в высотных зданиях без них и вовсе не обойтись. Без этого изобретения мы бы до сих пор жили в небольших грязных городах, с застройкой малой этажности. Высотное здание не будет функционировать без инженерных сетей и сантехники. Вы можете представить современный мир без всего этого?


Печатный станок, не беря во внимание рукописи, был первым известным средством связи и передачи информации. Его открытие стало настоящим научным прорывом. Иоганн Гутенберг приписывает изобретение первого печатного станка одной из древних цивилизаций западной Европы. Винтовые прессы для оливок и вина были известны в Европе ещё с римских времён, прессы для связывания рукописных книг также были в использовании. Именно эта технология была преобразована для печати. Благодаря этому изобретению можно было производить печатную продукцию в промышленных масштабах.


В 1769 году французским механиком Николасом Джозефом Кагнотом изобретено самое первое самоходное дорожное транспортное средство. Но эта «самоходная карета» ездила на паровом двигателе. В 1885 году Карл Бенц спроектировал и построил первый в мире автомобиль на двигателе внутреннего сгорания. В 1885 году Готтлиб Даймлер перенял опыт с двигателем внутреннего сгорания, усовершенствовал и запатентовал его. Именно этот патент признаётся в качестве прототипа современного двигателя, и позже он послужил основой для первого в мире четырёхколёсного автотранспортного средства.


Ещё в 2 500 г. до н. э. люди использовали пестициды для предотвращения повреждения сельскохозяйственных культур. Первый известный пестицид – простая пыль серы, которую использовали Шумеры около 4500 лет назад. К XV веку для уничтожения вредителей стали применять токсичные химические вещества, такие как мышьяк, ртуть и свинец. А в 1939 году Павел Мюллер обнаружил, что ДДТ является весьма эффективным инсектицидом. Он быстро стал самым широко применяемым пестицидом в мире. Тем не менее, в 1960-х годах было обнаружено, что ДДТ уничтожил многих птиц, питающихся рыбой, которая водилась в водоёмах рядом с посевами, и ДДТ несёт огромную угрозу для биоразнообразия.


Томас Севери, английский военный инженер и изобретатель в 1698 году запатентовал первый паровой двигатель. Ньюкомен изобрёл атмосферный паровой двигатель на основе изобретения Джеймса Уатта 1712 года, что стало огромным прорывом в промышленной революции. Его Центробежный регулятор сохранил работу двигателя с требуемой скоростью, и стал такой простой и элегантной модификацией первого патента, что может по праву считаться одним из лучших идей всех времён.


В 1837 году Чарльз Бэббидж стал первым, кто смог осмыслить реальность и разработать полностью программируемый механический компьютер, который он назвал «аналитической машиной». Из-за ограниченного финансирования и недостатка в обеспечении Бэббидж так и не построил свой аналитический аппарат. Масштабная обработка данных в автоматизированном режиме была впервые выполнена для переписи населения США в 1890 году. Для этого выпустили ряд машин, разработанных Холлеритом и изготовленных компанией Tabulating Recording Corporation, которая позже стала IBM.


Транзистор – фундаментальныё блок микросхем, который управляет работой компьютеров, сотовых телефонов и остальными изобретениями современной электроники. 16 декабря 1947 года Уильям Шокли, Джон Бардин и Уолтер Браттейн изобрели первый транзистор в Bell Labs. Эта работа проводилась в рамках гонки вооружений, чтобы произвести прибор чистой передачи информации. Он использовался в радиолокационных подразделениях в качестве элемента частотного смесителя в микроволновом радаре-приёмнике.


Пластик состоит из органических конденсационных или аддитивных полимеров, а также может содержать другие вещества для экономии или частичного изменения его свойств. Есть несколько природных полимеров. Первая пластмасса сделана на основе синтетического полимера была сделана из фенола и формальдегида. Причём первые жизнеспособные и дешёвые способы синтеза изобрёл Лео Хендрик Бакеланд в 1909 году, а продукт известен как бакелит. Впоследствии поливинилхлорид, полистирол, полиэтилен, полипропилен, полиамид (нейлоновые чулки), сложные полиэфиры, акрил, силикон, полиуретан были среди многих сортов пластмасс, имеющих большой коммерческий успех.

Электричество, напряжение


Электричество существовало всегда, но система устройств, необходимых для создания и распространения этой силы стало величайшим изобретением. Эти приборы впервые разработал и сконструировал Эдисон. Он эффективно преобразовал электричество в продаваемый товар, а его станция Перл-стрит стала первой в мире электростанцией. Открытие Никола Тесла переменного тока (AC) сделало возможным передавать электроэнергию на большие расстояния, что привело человечество к тем технологиям, какие мы знаем сегодня. Теперь каждый человек, в любой части мира может подключиться к сети, чтобы привести в действие всякий прибор, от лампочки до компьютера.

Иммунизация / Антибиотики


Три столетия назад, почти каждый второй умирал от инфекционных заболеваний. Когда чума вспыхнула в 1347 году, она выкосила почти половину Европы всего за 2 года. Оспа, поразившая жителей Северной Америки, сократила коренное население примерно на 90 процентов в течение века. Ещё в 1800 году ведущей причиной смертей на Западе был туберкулёз. Вряд ли кто-то умер от старости тогда, инфекции и были одной из причин такого почтения старейшин. Сегодня старость уже не так редка, много людей доживают до 70 лет. Но все же 73 процента людей умирают от сердечной недостаточности, рака и инсульта, потому что нужны новые лекарства.

Поделится в соц. сетях

За всё время существования нашей планеты были созданы сотни тысяч удивительных вещей. Достаточно лишь осмотреться по сторонам - всё, что мы видим, появилось в результате кропотливого людского труда. И среди этого многообразия невозможно объективно определить лучшее изобретение человечества. Впрочем, имеют место результаты масштабных социальных опросов и мнения учёных по данной теме. На них вполне можно ориентироваться при её изучении.

Открытие из прошлого

Самые лучшие изобретения человечества, которые правильнее называть открытиями, были обнаружены тысячи лет тому назад. Сейчас они - неотъемлемая часть нашей жизни.

На первом месте, естественно, огонь. Именно его освоение стало переломным моментом в Когда люди поняли, что представляет собой огонь, и как можно его использовать, они начали развивать свою активность в ночное время, защищаться им от хищников и готовить разнообразную (на то время) еду. Многие годами поддерживали его в пещерах, не допуская затухания. Ведь путь к самостоятельному добыванию огня был очень долгим.

Есть даже мнение, что благодаря огню процесс эволюции стал идти быстрее. Ведь прямоходящие Homo erectus на нём готовили крахмалосодержащую пищу, потребляя которую, они обеспечивали быстрое усвоение полисахаридов, способствующих интенсивному развитию головного мозга.

Письменность

Это однозначно тоже лучшее изобретение человечества. Убеждающая речь, чтобы доказать данное утверждение, даже не нужна. Ведь именно возникновение письменности положило начало развитию цивилизации и поспособствовало обмену знаниями между различными народами и культурами. Хотя начиналось всё в далёких 9000—7000 гг. до нашей эры, с ранних пиктограмм Передней Азии (Сирийский регион).

Бумага тоже считается одним из важнейших изобретений человечества. Письменность дала возможность людям сохранять любую полученную информацию. А бумага дала к ней доступ миллионам людей. Ведь до её изобретения все материалы, предназначенные для письма, стоили очень дорого. Появилась бумага, кстати, в 105 году до нашей эры. Её создал В дальнейшем его изобретение совершенствовалось, как и способ производства бумаги.

Книга

Многие говорят, что именно она - лучшее изобретение человечества. Книга, впрочем, заслуживает такого статуса. Пусть сейчас многие и воспринимают её как произведение печати в переплёте. Но это лишь потому, что люди привыкли к книгам.

На самом же деле каждая из них является отдельным маленьким миром. Именно книга является проводником информации сквозь века, гордостью человечества и его наследием. Это словесного и исторического опыта, тайн и удовольствия. Читая книги, люди становятся более образованными и интеллектуально подкованными, обогащают свой словарный запас, учатся размышлять и анализировать. Они совершенствуются как Личности с большой буквы. Только жаль, что в наш век современных технологий люди забывают о книгах и не так много читают, как это было раньше.

Электричество

Говоря о более близком к нашему времени периоду, логично будет начать именно с него. По масштабности это действительно самое важное и лучшее изобретение человечества. Электричество, впрочем, не является тем, что было создано руками людей. Ведь это не вещь, а совокупность явлений, которые обусловлены движением и взаимодействием электрических зарядов. Но в данном случае электричество имеет современное понимание.

Первый функциональный его источник был создан в XVIII веке. Тогда удалось изобрести вольтов столб - устройство для получения разряда.

И, надо сказать, многие опрашиваемые люди говорили, что они считают величайшим созданием человека… электрическую лампочку. Можно понять, почему. День сменяется ночью, но жизнь не останавливается, благодаря тому что в нашей жизни имеют место средства освещения - лампочки. Первый их прототип был изобретён немецким часовщиком Генрихом Гебелем в 1854 году. Спустя 26 лет лампочка была усовершенствована американским изобретателем Томасом Эдисоном. Именно он дал нашему миру выключатель, цоколь и патрон. Вольфрамовую нить изобрёл в 1890 году электротехник Александр Лодыгин, который также предложил наполнять лампочки инертным газом.

Шариковая ручка

На самом деле ничуть не удивительно, что среди столь масштабных открытий затесалась эта вещь. По результатам опроса, приведённого в Великобритании, оказалось, что большинство людей считают, что именно шариковая ручка - лучшее изобретение человечества. Эта простая и повседневная вещь была создана венгерским журналистом по имени в 1938 году. Важно отметить, что ему помогал брат Георг, являвшийся по профессии химиком.

Сначала изобретатели запатентовали шариковую ручку в Венгрии. Но потом началась Вторая мировая война. В связи с этим братья переехали в Аргентину и запатентовали изобретение там. Спустя какое-то время они продали право на производство шариковых ручек компании под названием Eversharp. Им выплатили 1 000 000 долларов, что было огромной суммой на те времена.

Начиная с 1943 года, осуществляется массовый выпуск шариковых ручек, являющихся сегодня незаменимыми канцелярскими приспособлениями, которыми пользуется каждый человек.

Интернет

Вряд ли люди станут возражать против того, что именно Всемирная сеть - лучшее изобретение человечества. Оно радикально изменило жизнь современного человека. Население планеты узнало про такие вещи, как видеосвязь, удалённая работа, игры, моментальное общение с собеседником в другой части Земли, онлайн-трансляции и многое другое.

Без сомнения, Интернет - лучшее изобретение человечества. Сейчас им пользуется ~4 миллиарда человек, и ежедневно это количество увеличивается. А началось всё в 1962 году. Именно тогда Джозеф Карл Робнетт Ликлайдер представил миру первую детально разработанную концепцию компьютерной сети. Спустя 5 лет стартовала работа над созданием интернет-сети ARPA Net. А первый сервер установили 02.09.1969. И уже 29 октября, спустя два месяца, между двумя компьютерами, находящимися на расстоянии 640 километров, провели сеанс связи.

С того момента Интернет начал стремительно развиваться. Уже через несколько месяцев появились новостные группы, списки почтовой рассылки и доски объявлений. А сегодня в Интернете есть практически всё.

Творения из «нулевых»

После краткого экскурса в историю, можно рассказать и про лучшие изобретения человечества 21 века. Началась новая эпоха созданием в 2001 году Сейчас это основа всех LED-дисплеев.

В 2002-м был совершён прорыв в медицине, ознаменовавшийся созданием искусственной сетчатки глаза. Затем, в следующем году, инженеры-техники разработали интерфейс для мысленного управления объектами.

2004 год был ознаменован сразу двумя поразительными изобретениями. Мир увидел нейтронный микроскоп и бионический глаз.

Ещё спустя год был создан робот, способный создавать свои копии. А в 2006-м человечеству представили самовосстанавливающиеся покрытия и краски.

В 2007 году открытий не было, но зато в 2008-м мир узнал про пассивный элемент из микроэлектроники, который может изменять своё сопротивление в зависимости от заряда, через него протекавшего. Его назвали мемристором.

В следующих двух годах было сделано ещё четыре открытия. Впервые осуществили передачу мысли в Интернет, создали биологический 3D-принтер, специалисты LG разработали ультрамобильный ПК, а биологи вывели первую живую клетку, ДНК которой заменили на искусственную. Всё это было действительно поразительно. Многое удивляет даже сейчас. Именно поэтому так сложно определить лучшее изобретение человечества.

До середины «десятых»

Масштабными разработками ознаменовался и 2012 год. Тогда был создан воздушный дисплей, шлем виртуальной реальности и разработан метод производства особой растворимой электроники.

В 2013-м удалось установить лазерную космическую связь. А в 2014-м изобрели MEMS-наноинъектор и менее значимую, но забавную вещь - умные палочки для еды. Потом, в 2015-м, миру была представлена «спящая» бактерия (роботизированное нано-устройство). Она выполняет функции сверхчувствительного датчика влажности, благодаря наличию на поверхности особых нано-структур.

Последние годы

Завершить рассказ хотелось бы, обозначив ТОП-10 лучших изобретений человечества за прошлый, 2016 год.

Первое место занимает парящая лампочка Flyte, у которой удаётся парить и вращаться за счёт электромагнетизма. Светится она благодаря индукционной резонирующей связи.

Второе место справедливо занимает солнечная крыша Tesla, перерабатывающая излучение светила в электроэнергию.

Следующее удивительное изобретение - кроссовки Nike HyperAdapt 1.0 с автоматической шнуровкой. Мечта всех фанатов фильма «Назад в будущее» стала реальностью.

На четвёртом месте находится интеллектуальный многофункциональный будильник Hello Sense, следящий за циклами сна и дающий команду просыпаться в самый подходящий для его владельца момент.

Также в 2016-м появились шины Eagle 360, вращающиеся во всех направления, «умная» зубная щётка, а ещё посуда для людей, имеющих проблемы с когнитивными функциями. Кроме этого, мир увидел мощный и сладкий картофель обогащённый витамином А, и крошечный дрон Dji Mavic Pro, оснащённый 4К-камерой.

Итак, это малая часть того, что можно рассказать о наиболее удивительных и важных изобретениях человечества. Безусловно, за всю историю его существования было сделано в десятки тысяч раз больше открытий. И можно быть уверенными, что с течением времени это количество увеличится многократно.

История человечества тесно связана с постоянным прогрессом, развитием технологий, новыми открытиями и изобретениями. Некоторые технологии устарели и стали историей, другие, такие как колесо или парус, используются до сих пор. Бесчисленное количество открытий было утрачено в водовороте времени, иные, не оценённые современниками, ждали признания и внедрения десятки и сотни лет.

Редакция Samogo.Net провела собственное исследование, призванное ответить на вопрос о том, какие же изобретения считаются нашими современниками наиболее значимыми.

Обработка и анализ результатов интернет-опросов показали, что единого мнения на этот счёт попросту нет. Тем не менее, нам удалось сформировать общий уникальный рейтинг величайших изобретений и открытий в истории человечества. Как оказалось, не смотря на то, что наука давно ушла вперёд, базовые открытия в умах наших современников остаются наиболее значимыми.

Первое место бесспорно занял Огонь

Люди рано открыли полезные свойства огня - его способности освещать и согревать, изменять к лучшему растительную и животную пищу.

"Дикий огонь", который вспыхивал во время лесных пожаров или извержений вулканов, был страшен для человека, но, принеся огонь в свою пещеру, человек "приручил" его и "поставил" себе на службу. С этого времени огонь стал постоянным спутником человека и основой его хозяйства. В древние времена он был незаменимым источником тепла, света, средством для приготовления пищи, орудием охоты.
Однако и дальнейшие завоевания культуры (керамика, металлургия, сталеварение, паровые машины и т.п.) обязаны комплексному использованию огня.

Долгие тысячелетия люди пользовались "домашним огнем", поддерживали его из года в год в своих пещерах, прежде чем научились добывать его сами при помощи трения. Вероятно, это открытие произошло случайно, после того как наши предки научились сверлить дерево. Во время этой операции происходило нагревание древесины и при благоприятных условиях могло произойти воспламенение. Обратив на это внимание, люди стали широко пользоваться трением для добывания огня.

Простейший способ состоял в том, что брались две палочки сухого дерева, в одной из которых делали лунку. Первая палочка клалась на землю и прижималась коленом. Вторую вставляли в лунку, а затем начинали быстро-быстро вращать между ладонями. В то же время необходимо было с силой давить на палочку. Неудобство такого способа заключалось в том, что ладони постепенно сползали вниз. Приходилось то и дело поднимать их вверх и снова продолжать вращение. Хотя, при известной сноровке, это можно делать быстро, все же из-за постоянных остановок процесс сильно затягивался. Гораздо проще добыть огонь трением, работая вдвоем. При этом один человек удерживал горизонтальную палочку и давил сверху на вертикальную, а второй - быстро-быстро вращал ее между ладонями. Позже вертикальную палочку стали обхватывать ремешком, двигая который вправо и влево можно ускорить движение, а на верхний конец для удобства стали накладывать костяной колпачок. Таким образом, все устройство для добывания огня стало состоять из четырех частей: двух палочек (неподвижной и вращающейся), ремешка и верхнего колпачка. Таким способом можно было добывать огонь и в одиночку, если прижимать нижнюю палочку коленом к земле, а колпачок - зубами.

И только уже потом, с развитием человечества стали доступны иные способы получения открытого огня.

Второе место в ответах интернет-сообщества заняли Колесо и Повозка



Считается, что его прообразом, возможно, стали катки, которые подкладывались под тяжелые стволы деревьев, лодки и камни при их перетаскивании с места на место. Возможно, тогда же были сделаны первые наблюдения над свойствами вращающихся тел. Например, если бревно-каток по какой-то причине в центре было тоньше, чем по краям, оно передвигалось под грузом более равномерно и его не заносило в сторону. Заметив это, люди стали умышленно обжигать катки таким образом, что средняя часть становилась тоньше, а боковые оставались неизменными. Таким образом получилось приспособление, которое теперь называется "скатом".В ходе дальнейших усовершенствований в этом направлении от цельного бревна остались только два валика на его концах, а между ними появилась ось. Позднее их стали изготовлять отдельно, а затем жестко скреплять между собой. Так было открыто колесо в собственном смысле этого слова и появилась первая повозка.

В последующие века множество поколений мастеров потрудились над усовершенствованием этого изобретения. Первоначально сплошные колеса жестко скреплялись с осью и вращались вместе с ней. При передвижении по ровной дороге такие повозки были вполне пригодны для использования. На повороте, когда колеса должны вращаться с разной скоростью, это соединение создает большие неудобства, так как тяжело груженная повозка может легко сломаться или перевернуться. Сами колеса были еще очень несовершенны. Их делали из цельного куска дерева. Поэтому повозки были тяжелыми и неповоротливыми. Передвигались они медленно, и обычно в них запрягали неторопливых, но могучих волов.

Одна из древнейших повозок описываемой конструкции найдена при раскопках в Мохенджо-Даро. Крупным шагом вперед в развитии техники передвижения стало изобретение колеса со ступицей, насаживающегося на неподвижную ось. В этом случае колеса вращались независимо друг от друга. А чтобы колесо меньше терлось об ось, ее стали смазывать жиром или дегтем.

Ради уменьшения веса колеса в нем выпиливали вырезы, а для жесткости укрепляли поперечными скрепами. Ничего лучшего в эпоху каменного века придумать было нельзя. Но после открытия металлов стали изготавливать колеса с металлическим ободом и спицами. Такое колесо могло вращаться в десятки раз быстрее и не боялось ударов о камни. Запрягая в повозку быстроногих лошадей, человек значительно увеличил скорость своего передвижения. Пожалуй, трудно найти другое открытие, которое дало бы такой мощный толчок развитию техники.

Третье место по праву заняла Письменность



Нет нужды говорить о том, какое великое значение в истории человечества имело изобретение письменности. Невозможно даже представить себе, каким путем могло пойти развитие цивилизации, если бы на определенном этапе своего развития люди не научились фиксировать с помощью определенных символов нужную им информацию и таким образом передавать и сохранять ее. Очевидно, что человеческое общество в таком виде, в каком оно существует сегодня, просто не могло бы появиться.

Первые формы письменности в виде особым образом начертанных знаков появилась около 4 тысяч лет до Р.Х. Но уже задолго до этого существовали различные способы передачи и хранения информации: с помощью определенным образом сложенных ветвей, стрел, дыма костров и тому подобных сигналов. Из этих примитивных систем оповещения позже появились более сложные способы фиксирования информации. Например, древние инки изобрели оригинальную систему "записи" с помощью узелков. Для этого использовались шнурки шерсти разного цвета. Их связывали разнообразными узелками и крепили на палочку. В таком виде "письмо" посылалось адресату. Существует мнение, что инки с помощью такого "узелкового письма" фиксировали свои законы, записывали хроники и стихи. "Узелковое письмо" отмечено и у других народов - им пользовались в древнем Китае и Монголии.

Однако письменность в собственном смысле этого слова появилась лишь после того, как люди для фиксации и передачи информации изобрели особые графические знаки. Самым древним видом письма считается пиктографическое. Пиктограмма представляет собой схематический рисунок, который непосредственно изображает вещи, события, и явления, о которых идет речь. Предполагается, что пиктография была широко распространена у различных народов на последней стадии каменного века. Это письмо очень наглядно, и поэтому ему не надо специально учиться. Оно вполне пригодно для передачи небольших сообщений и для записи несложных рассказов. Но когда возникала потребность передать какую-нибудь сложную абстрактную мысль или понятие, сразу ощущались ограниченные возможности пиктограммы, которая совершенно не приспособлена к записи того, что не поддается рисунчатому изображению (например, таких понятий, как бодрость, храбрость, зоркость, хороший сон, небесная лазурь и т.п.). Поэтому уже на ранней стадии истории письма в число пиктограмм стали входить особые условные значки, обозначающие определенные понятия (например, знак скрещенных рук символизировал обмен). Такие значки называются идеограммами. Идеографическое письмо возникло и пиктографического, причем можно вполне отчетливо представить себе, как это произошло: каждый изобразительный знак пиктограммы стал все более обособляться от других и связываться с определенным словом или понятием, обозначая его. Постепенно этот процесс настолько развился, что примитивные пиктограммы утратили свою прежнюю наглядность, но зато обрели четкость и определенность. Процесс этот занял долгое время, быть может, несколько тысячелетий.

Высшей формой идеограммы стало иероглифическое письмо. Впервые оно возникло в Древнем Египте. Позже иероглифическая письменность получила широкое распространение на Дальнем Востоке - в Китае, Японии и Корее. С помощью идеограмм можно было отразить любую, даже самую сложную и отвлеченную мысль. Однако для не посвященных в тайну иероглифов смысл написанного был совершенно непонятен. Каждый, кто хотел научиться писать, должен был запомнить несколько тысяч значков. Реально на это уходило несколько лет постоянных упражнений. Поэтому писать и читать в древности умели немногие.

Только в конце 2 тыс. до Р.Х. древние финикийцы изобрели буквенно- звуковой алфавит, который послужил образцом для алфавитов многих других народов. Финикийский алфавит состоял из 22 согласных букв, каждая из которых обозначала отдельный звук. Изобретение этого алфавита стало для человечества большим шагом вперед. При помощи нового письма легко было передать графически любое слово, не прибегая к идеограммам. Обучиться ему было очень просто. Искусство письма перестало быть привилегией просвещенных. Оно стало достоянием всего общества или, по крайней мере, большей его части. Это послужило одной из причин быстрого распространения финикийского алфавита по всему миру. Как считают, четыре пятых всех известных ныне алфавитов возникло из финикийского.

Так, из разновидности финикийского письма (пунического) развилось ливийское. Непосредственно от финикийского произошло древнееврейское, арамейское и греческое письмо. В свою очередь, на основе арамейского письма сложились арабская, набатейская, сирийская, персидская и другие письменности. Греки внесли в финикийский алфавит последнее важное усовершенствование - они стали обозначать буквами не только согласные, но и гласные звуки. Греческий алфавит лег в основу большинства европейских алфавитов: латинского (от которого в свою очередь произошли французский, немецкий, английский, итальянский, испанский и др. алфавиты), коптского, армянского, грузинского и славянского (сербского, русского, болгарского и др.).

Четвертое место, вслед за письменностью занимает Бумага


Ее создателями были китайцы. И это не случайно. Во-первых, Китай уже в глубокой древности славился книжной премудростью и сложной системой бюрократического управления, требовавшей от чиновников постоянной отчетности. Поэтому здесь всегда ощущалась потребность в недорогом и компактном материале для письма. До изобретения бумаги в Китае писали или на бамбуковых дощечках, или на шелке.

Но шелк был всегда очень дорогим, а бамбук - очень громоздким и тяжелым. (На одной дощечке помещалось в среднем 30 иероглифов. Легко представить, сколько места должна была занимать такая бамбуковая "книга". Не случайно пишут, что для перевозки некоторых сочинений требовалась целая телега.) Во-вторых, одни только китайцы долгое время знали секрет производства шелка, а бумажное дело как раз и развивалось из одной технической операции обработки шелковых коконов. Эта операция заключалась в следующем. Женщины, занимавшиеся шелководством, варили коконы шелкопряда, затем, разложив их на циновку, опускали в воду и перетирали до образования однородной массы. Когда массу вынимали и отцеживали воду, получалась шелковая вата. Однако после такой механической и тепловой обработки ни циновках оставался тонкий волокнистый слой, превращавшийся после просушки в лист очень тонкой бумаги, пригодной для письма. Позже работницы стали использовать бракованные коконы шелкопряда для целенаправленного изготовления бумаги. При этом они повторяли уже знакомый им процесс: варили коконы, промывали и измельчали до получения бумажной массы, наконец, высушивали получившиеся листы. Такая бумага называлась "ватной" и стоила достаточно дорого, так как дорого было само сырье.

Естественно, что в конце концов возник вопрос: можно ли бумагу делать только из шелка или для приготовления бумажной массы может подойти любое волокнистое сырье, в том числе растительного происхождения? В 105 г. некто Цай Лунь, важный чиновник при дворе ханьского императора, приготовил новый сорт бумаги из старых рыболовных сетей. По качеству она не ступала шелковой, но была значительно дешевле. Это важное открытие имело огромные последствия не только для Китая, но и для всего мира - впервые в истории люди получили первоклассный и доступный материал для письма, равноценной замены которому не и по сей день. Имя Цай Луня поэтому по праву входит в число имен величайших изобретателей в истории человечества. В последующие века в процесс изготовления бумаги было внесено несколько важных усовершенствований, благодаря чему оно стало быстро развиваться.

В IV веке бумага совершенно вытеснила из употребления бамбуковые дощечки. Новые опыты показали, что бумагу можно делать из дешевого растительного сырья: древесной коры, тростника и бамбука. Последнее было особенно важно, так как бамбук произрастает в Китае в огромном количестве. Бамбук расщепляли на тонкие лучинки, замачивали с известью, а полученную массу вываривали затем в течение нескольких суток. Отцеженную гущу выдерживали в специальных ямах, тщательно размалывали специальными билами и разбавляли водой до образования клейкой, кашицеобразной массы. Эту массу зачерпывали с помощью специальной формы - бамбукового сита, укрепленного на подрамнике. Тонкий слой массы вместе с формой клали под пресс. Затем форма вытаскивалась и под прессом оставался только бумажный лист. Спрессованные листы снимали с сита, складывали в кипу, сушили, разглаживали и резали по формату.

С течением времени китайцы достигли высочайшего искусства в изготовлении бумаги. На протяжении нескольких веков они, по своему обыкновению, тщательно хранили секреты бумажного производства. Но в 751 году во время столкновения с арабами в предгорьях Тянь-Шаня несколько китайских мастеров попали в плен. От них арабы научились сами делать бумагу и в течение пяти веков очень выгодно сбывали ее в Европу. Европейцы были последними из цивилизованных народов, которые научились сами изготавливать бумагу. Первыми это искусство переняли от арабов испанцы. В 1154 году бумажное производство было налажено и в Италии, в 1228-м в Германии, в 1309-м в Англии. В последующие века бумага получила во всем мире широчайшее распространение, постепенно завоевывая все новые и новые сферы применения. Значение ее в нашей жизни столь велико, что, по мнению известного французского библиографа А. Сима, нашу эпоху можно с полным правом назвать "бумажной эрой".

Пятое место заняли Порох и Огнестрельное оружие



Изобретение пороха и распространение его в Европе имело огромные последствия для дальнейшей истории человечества. Хотя европейцы последними из цивилизованных народов научились делать эту взрывчатую смесь, именно они сумели извлечь из ее открытия наибольшую практическую пользу. Бурное развитие огнестрельного оружия и революция в военном деле были первыми следствиями распространения пороха. Это в свою очередь повлекло за собой глубочайшие социальные сдвиги: закованные в латы рыцари и их неприступные замки оказались бессильны перед огнем пушек и аркебуз. Феодальному обществу был нанесен такой удар, от которого оно уже не смогло оправиться. В короткое время многие европейские державы преодолели феодальную раздробленность и превратились в могущественные централизованные государства.

В истории техники найдется мало изобретений, которые привели бы к таким грандиозным и далеко идущим изменениям. До того как порох стал известен на западе, он уже имел многовековую историю на востоке, а изобрели его китайцы. Важнейшей составной частью пороха является селитра. В некоторых областях Китая она встречалась в самородном виде и была похожа на хлопья снега, припорошившего землю. Позже открыли, что селитра образуется в местностях, богатых щелочами и гниющими (доставляющими азот) веществами. Разжигая огонь, китайцы могли наблюдать вспышки, возникавшие при горении селитры с углем.

Впервые свойства селитры описал китайский медик Тао Хун-цзин, живший на рубеже V и VI столетий. С этого времени она применялась как составная часть некоторых лекарств. Алхимики часто пользовались ей, проводя опыты. В VII веке один из них, Сунь Сы-мяо, приготовил смесь из серы и селитры, добавив к ним несколько долей локустового дерева. Нагревая эту смесь в тигле, он вдруг получил сильнейшую вспышку пламени. Этот опыт он описал в своем трактате "Дань цзин". Считается, что Сунь Сы-мяо приготовил один из первых образцов пороха, который, правда, не обладал еще сильным взрывчатым эффектом.

В дальнейшем состав пороха был усовершенствован другими алхимиками, установившими опытным путем три его основных компонента: уголь, серу и калиевую селитру. Средневековые китайцы не могли научно объяснить, что за взрывная реакция происходит при воспламенении пороха, но они очень скоро научились использовать ее в военных целях. Правда, в их жизни порох вовсе не имел того революционного влияния, которое оказал позже на европейское общество. Объясняется это тем, что мастера долгое время готовили пороховую смесь из неочищенных компонентов. Между тем неочищенная селитра и сера, содержащая посторонние примеси, не давали сильного взрывного эффекта. Несколько веков порох использовался исключительно в качестве зажигательного средства. Позднее, когда его качество улучшилось, порох стали применять как взрывчатое вещество при изготовлении фугасов, ручных гранат и взрывпакетов.

Но и после этого долгое время не догадывались использовать силу возникавших при горении пороха газов для метания пуль и ядер. Только в XII-XIII веках китайцы стали пользоваться оружием, очень отдаленно напоминавшем огнестрельное, но зато они изобрели петарду и ракету. От китайцев секрет пороха узнали арабы и монголы. В первой трети XIII века арабы достигли большого искусства в пиротехнике. Они употребляли селитру во многих соединениях, мешая ее с серой и углем, добавляли к ним другие компоненты и устраивали фейерверки удивительной красоты. От арабов состав пороховой смеси стал известен европейским алхимикам. Один из них, Марк Грек, уже в 1220 году записал в своем трактате рецепт пороха: 6 частей селитры на 1 часть серы и 1 часть угля. Позже достаточно точно о составе пороха писал Роджер Бэкон.

Однако прошло еще около ста лет, прежде чем рецепт этот перестал быть тайной. Это вторичное открытие пороха связывают с именем другого алхимика, фейбургского монаха Бертольда Шварца. Однажды он стал толочь в ступке измельченную смесь из селитры, серы и угля, в результате чего произошел взрыв, опаливший Бертольду бороду. Этот или другой опыт подал Бертольду мысль использовать силу пороховых газов для метания камней. Считается, что он изготовил одно из первых в Европе артиллерийских орудий.

Первоначально порох представлял собой тонкий мукообразный порошок. Пользоваться им было не удобно, так как при зарядке орудий и аркебузов пороховая мякоть липла к стенкам ствола. Наконец заметили, что порох в виде комочков гораздо удобнее - он легко заряжался и при воспламенении давал больше газов (2 фунта пороха в комьях давали больший эффект, чем 3 фунта в мякоти).

В первой четверти XV века для удобства стали употреблять зерновой порох, получавшийся путем раскатывания пороховой мякоти (со спиртом и другими примесями) в тесто, которое затем пропускали через решето. Чтобы зерна не перетирались при транспортировке, их научились полировать. Для этого их помещали в специальный барабан, при раскручивании которого зерна ударялись и терлись друг о друга и уплотнялись. После обработки их поверхность становилась гладкой и блестящей.

Шестое место в опросах заняли: телеграф, телефон, интернет, радио и прочие виды современной коммуникации



Вплоть до середины XIX века единственным средством сообщения между европейским континентом и Англией, между Америкой и Европой, между Европой и колониями оставалась пароходная почта. О происшествиях и событиях в других странах узнавали с опозданием на целые недели, а порой и месяцы. Например, известия из Европы в Америку доставлялись через две недели, и это был еще не самый долгий срок. Поэтому создание телеграфа отвечало самым настоятельным потребностям человечества.

После того, как это техническая новинка появилась во всех концах света и земной шар опоясали телеграфные линии, требовались только часы, а порой и минуты, на то, чтобы новость по электрическим проводам из одного полушария примчалась в другое. Политические и биржевые сводки, личные и деловые сообщения в тот же день могли быть доставлены заинтересованным лицам. Таким образом, телеграф следует отнести к одному из важнейших изобретений в истории цивилизации, потому что вместе с ним человеческий разум одержал величайшую побед над расстоянием.

С изобретением телеграфа была решена задача передачи сообщений на большие расстояния. Однако телеграф мог переслать только письменные депеши. Между тем многие изобретатели мечтали о более совершенном и коммуникабельном способе связи, с помощью которого можно было бы передавать на любые расстояния живой звук человеческой речи или музыку. Первые эксперименты в этом направлении предпринял в 1837 году американский физик Пейдж. Суть опытов Пейджа была очень проста. Он собрал электрическую цепь, в которую входили камертон, электромагнит, и гальванические элементы. Во время своих колебаний камертон быстро размыкал и замыкал цепь. Этот прерывистый ток передавался на электромагнит, который так же быстро притягивал и отпускал тонкий стальной стержень. В результате этих колебаний стержень производил поющий звук, подобный тому, который издавал камертон. Таким образом, Пейдж показал, что передавать звук с помощью электрического тока в принципе возможно, надо только создать более совершенные передающие и принимающие устройства.

И уже в последствии, в результате долгих поисков, открытий и изобретений, появились мобильный телефон, телевидение, интернет и прочие средства коммуникации человечества, без которых невозможно себе представить нашу современную жизнь.

Седьмое место в топ-10 по результатам опросов занял Автомобиль



Автомобиль принадлежит к числу тех величайших изобретений, которые, подобно колесу, пороху или электрическому току, имели колоссальное влияние не только на породившую их эпоху, но и на все последующие времена. Его многогранное воздействие далеко не ограничивается сферой транспорта. Автомобиль сформировал современную индустрию, породил новые отрасли промышленности, деспотически перестроил само производство, впервые придав ему массовый, серийный и поточный характер. Он преобразил внешний облик планеты, которая опоясалась миллионами километров шоссейных дорог, оказал давление на экологию и поменял даже психологию человека. Влияние автомобиля сейчас настолько многопланово, что ощущается во всех сферах человеческой жизни. Он сделался как бы зримым и наглядным воплощением технического прогресса вообще, со всеми его достоинствами и недостатками.

В истории автомобиля было много удивительных страниц, но, возможно, самая яркая из них относится к первым годам его существования. Не может не поражать стремительность, с которой это изобретение прошло путь от появления до зрелости. Понадобилась всего четверть века на то, чтобы автомобиль из капризной и еще ненадежной игрушки превратился в самое популярное и широко распространенное транспортное средство. Уже в начале XX века он был в главных чертах идентичен современному автомобилю.

Непосредственным предшественником бензинового автомобиля стал паромобиль. Первым практически действовавшим паровым автомобилем считается паровая телега, построенная французом Кюньо в 1769 году. Перевозя до 3 тонн груза, она передвигалась со скоростью всего 2‑4 км/ч. Были у нее и другие недостатки. Тяжелая машина очень плохо слушалась руля, постоянно наезжала на стены домов и заборы, производя разрушения и терпя немалый урон. Две лошадиные силы, которые развивал ее двигатель, давались с трудом. Несмотря на большой объем котла, давление быстро падало. Через каждые четверть часа для поддержания давления приходилось останавливаться и разжигать топку. Одна из поездок закончилась взрывом котла. К счастью, сам Кюньо остался жив.

Последователи Кюньо оказались удачливее. В 1803 году уже известный нам Тривайтик построил первый в Великобритании паровой автомобиль. Машина имела огромные задние колеса около 2, 5 м в диаметре. Между колесами и задней частью рамы крепился котел, который обслуживал стоявший на запятках кочегар. Паромобиль был снабжен единственным горизонтальным цилиндром. От штока поршня через шатунно‑кривошипный механизм вращалось ведущее зубчатое колесо, которое находилось в зацеплении с другим зубчатым колесом, укрепленным на оси задних колес. Ось этих колес шарнирно соединялась с рамой и поворачивалась при помощи длинного рычага водителем, сидящим на высоком облучке. Кузов подвешивался на высоких С‑образных рессорах. С 8‑10 пассажирами автомобиль развивал скорость до 15 км/ч, что, несомненно, являлось очень неплохим для того времени достижением. Появление этой удивительной машины на улицах Лондона привлекало массу зевак, не скрывавших своего восторга.

Автомобиль в современном смысле этого слова появился только после создания компактного и экономичного двигателя внутреннего сгорания, который произвел подлинный переворот в транспортной технике.
Первый автомобиль с бензиновым двигателем построил в 1864 году австрийский изобретатель Зигфрид Маркус. Увлекаясь пиротехникой, Маркус однажды поджег электрической искрой смесь паров бензина и воздуха. Пораженный силой последовавшего взрыва, он решил создать двигатель, в котором бы этот эффект нашел применение. В конце концов ему удалось построить двухтактный бензиновый двигатель с электрическим зажиганием, который он и установил на обыкновенную повозку. В 1875 году Маркус создал более совершенный автомобиль.

Официальная слава изобретателей автомобиля принадлежит двум немецким инженерам - Бенцу и Даймлеру. Бенц конструировал двухтактные газовые двигатели и являлся хозяином небольшого завода по их производству. Двигатели имели хороший спрос, и предприятие Бенца процветало. Он имел достаточно средств и досуга для других разработок. Мечтой Бенца было создание самодвижущегося экипажа с двигателем внутреннего сгорания. Собственный двигатель Бенца, как и четырехтактный двигатель Отто, для этого не годился, поскольку они имели малую скорость хода (около 120 оборотов в минуту). При некотором понижении числа оборотов они глохли. Бенц понимал, что машина, снабженная таким мотором, будет останавливаться перед каждым бугорком. Нужен был быстроходный двигатель с хорошей системой зажигания и аппаратом для образования горючей смеси.

Автомобили быстро совершенствовались Еще в 1891 году Эдуард Мишлен, владелец завода резиновых изделий в Клермон‑Ферране, изобрел съемную пневматическую шину для велосипеда (камера Данлопа заливалась в покрышку и приклеивалась к ободу). В 1895 году начался выпуск съемных пневматических шин для автомашин. Впервые эти шины были опробованы в том же году на гонке Париж - Бордо - Париж. Оснащенный ими «Пежо» с трудом доехал до Руана, а потом был вынужден сойти с дистанции, так как шины беспрерывно прокалывались. Тем не менее специалисты и автолюбители были поражены плавностью хода машины и комфортностью езды на ней. С этого времени пневматические шины постепенно вошли в жизнь, и ими стали оснащаться все автомобили. Победителем же на этих гонках был опять Левассор. Когда он остановил машину на финише и ступил на землю, то сказал: «Это было безумие. Я делал 30 километров в час!» Сейчас на месте финиша стоит памятник в честь этой знаменательной победы.

Восьмое место - Электрическая лампочка


В последние десятилетия XIX века в жизнь многих европейских городов вошло электрическое освещение. Появившись сначала на улицах и площадях, оно очень скоро проникло в каждый дом, в каждую квартиру и сделалось неотъемлемой частью жизни каждого цивилизованного человека. Это было одно из важнейших событий в истории техники, имевшее огромные и многообразные последствия. Бурное развитие электрического освещения привело к массовой электрификации, перевороту в энергетике и крупным сдвигам в промышленности. Однако всего этого могло и не случиться, если бы усилиями многих изобретателей не было создано такое обычное и привычное для нас устройство, как электрическая лампочка. В числе величайших открытий человеческой истории ей, несомненно, принадлежит одно из самых почетных мест.

В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые. Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня. При достаточно большом напряжении между ними образуется свет ослепительной силы.

Впервые явление вольтовой дуги наблюдал в 1803 году русский ученый Василий Петров. В 1810 году то же открытие сделал английский физик Деви. Оба они получили вольтову дугу, пользуясь большой батареей элементов, между концами стерженьков из древесного угля. И тот, и другой писали, что вольтова дуга может использоваться в целях освещения. Но прежде надо было найти более подходящий материал для электродов, поскольку стержни из древесного угля сгорали за несколько минут и были малопригодны для практического использования. Дуговые лампы имели и другое неудобство - по мере выгорания электродов надо было постоянно подвигать их навстречу друг другу. Как только расстояние между ними превышало некий допустимый минимум, свет лампы становился неровным, она начинала мерцать и гасла.

Первую дуговую лампу с ручным регулированием длины дуги сконструировал в 1844 году французский физик Фуко. Древесный уголь он заменил палочками из твердого кокса. В 1848 году он впервые применил дуговую лампу для освещения одной из парижских площадей. Это был, короткий и весьма дорогой опыт, так как источником электричества служила мощная батарея. Затем были придуманы различные приспособления, управляемые часовым механизмом, которые автоматически сдвигали электроды по мере их сгорания.
Понятно, что с точки зрения практического использования желательно было иметь лампу, не осложненную дополнительными механизмами. Но можно ли было обойтись без них? Оказалось, что да. Если поставить два уголька не друг против друга, а параллельно, притом так, чтобы дуга могла образовываться только между двумя их концами, то при этом устройстве расстояние между концами углей всегда сохраняется неизменным. Конструкция такой лампы кажется очень простой, однако создание ее потребовало большой изобретательности. Она была придумана в 1876 году русским электротехником Яблочковым, который работал в Париже в мастерской академика Бреге.

В 1879 году за усовершенствование электрической лампочки взялся знаменитый американский изобретатель Эдисон. Он понимал: для того, чтобы лампочка светила ярко и долго и имела ровный немигающий свет, необходимо, во‑первых, найти подходящий материал для нити, и, во‑вторых, научиться создавать в баллоне сильно разреженное пространство. Было проделано множество экспериментов с различными материалами, которые ставились со свойственным для Эдисона размахом. Подсчитано, что его помощники опробовали не менее 6000 различных веществ и соединений, при этом на опыты было израсходовано свыше 100 тысяч долларов. Сначала Эдисон заменил ломкий бумажный уголек более прочным, приготовленным из угля, потом стал делать опыты с различными металлами и наконец остановился на нити из обугленных бамбуковых волокон. В том же году в присутствии трех тысяч человек Эдисон публично демонстрировал свои электрические лампочки, осветив ими свой дом, лабораторию и несколько прилегающих улиц. Это была первая лампочка с продолжительным сроком службы, пригодная для массового производства.

Предпоследнее, девятое место в нашем топ-10 занимают Антибиотики, и в частности - пеницилин



Антибиотики - одно из замечательнейших изобретений XX века в области медицины. Современные люди далеко не всегда отдают себе отчет в том, сколь многим они обязаны этим лечебным препаратам. Человечество вообще очень быстро привыкает к поразительным достижениям своей науки, и порой требуется сделать некоторое усилие для того, чтобы представить себе жизнь такой, какой она была, к примеру, до изобретения телевизора, радио или паровоза. Так же быстро вошло в нашу жизнь огромное семейство разнообразных антибиотиков, первым из которых был пенициллин.

Сегодня нам кажется удивительным, что еще в 30‑х годах XX столетия ежегодно десятки тысяч людей умирали от дизентерии, что воспаление легких во многих случаях кончалось смертельным исходом, что сепсис был настоящим бичом всех хирургических больных, которые во множестве гибли от заражения крови, что тиф считался опаснейшей и трудноизлечимой болезнью, а легочная чума неизбежно вела больного к смерти. Все эти страшные болезни (и многие другие, прежде неизлечимые, например, туберкулез) были побеждены антибиотиками.

Еще более поразительно влияние этих препаратов на военную медицину. Трудно поверить, но в прежних войнах большинство солдат гибло не от пуль и осколков, а от гнойных заражений, вызванных ранением. Известно, что в окружающем нас пространстве находятся мириады микроскопических организмов микробов, среди которых немало и опасных возбудителей болезней.

В обычных условиях наша кожа препятствует их проникновению внутрь организма. Но во время ранения грязь попадала в открытые раны вместе с миллионами гнилостных бактерий (кокков). Они начинали размножаться с колоссальной быстротой, проникали глубоко внутрь тканей, и через несколько часов уже никакой хирург не мог спасти человека: рана гноилась, повышалась температура, начинался сепсис или гангрена. Человек погибал не столько от самой раны, сколько от раневых осложнений. Медицина оказывалась бессильна перед ними. В лучшем случае врач успевал ампутировать пораженный орган и тем останавливал распространение болезни.

Чтобы бороться с раневыми осложнениями, надо было научиться парализовать микробов, вызывающих эти осложнения, научиться обезвреживать попавших в рану кокков. Но как этого достигнуть? Оказалось, что воевать с микроорганизмами можно непосредственно с их же помощью, так как одни микроорганизмы в процессе своей жизнедеятельности выделяют вещества, способные уничтожать другие микроорганизмы. Идея использовать микробов в борьбе с микробами появилась еще в XIX веке. Так, Луи Пастер открыл, что бациллы сибирской язвы погибают под действием некоторых других микробов. Но понятно, что разрешение этой проблемы требовало огромного труда.

Со временем, после ряда опытов и открытий был создан пенициллин. Пенициллин показался видавшим виды полевым хирургам настоящим чудом. Он вылечивал даже самых тяжелых больных, уже болевших заражением крови или воспалением легких. Создание пенициллина оказалось одним из важнейших открытий в истории медицины и дало огромный толчок для дальнейшего ее развития.

Ну и последнее, десятое место в результатах опросов заняли Парус и корабль



Считается, что прообраз паруса появился в глубокой древности, когда человек только начал строить лодки и отважился выйти в море. В начале парусом служила просто натянутая звериная шкура. Стоявшему в лодке человеку приходилось обеими руками держать и ориентировать ее относительно ветра. Когда люди придумали укреплять парус с помощью мачты и рей, неизвестно, но уже на древнейших дошедших до нас изображениях кораблей египетской царицы Хатшепсут можно видеть деревянные мачты и реи, а также штаги (тросы, удерживающие от падения назад мачту), фалы (снасти для подъема и спуска парусов) и другой такелаж.

Следовательно, появление парусного судна надо отнести к доисторическим временам.

Многое свидетельствует о том, что первые большие парусные корабли появились в Египте, и Нил был первой многоводной рекой, на которой стало развиваться речное судоходство. Каждый год с июля по ноябрь могучая река выходила из берегов, заливая своими водами всю страну. Селения и города оказывались отрезанными друг от друга подобно островам. Поэтому суда были для египтян жизненной необходимостью. В хозяйственной жизни страны и в общении между людьми они играли гораздо большую роль, чем колесные повозки.

Одной из ранних разновидностей египетских кораблей, появившихся около 5 тысяч лет до Р.Х., была барка. Она известна современным ученым по нескольким моделям, установленным в древних храмах. Поскольку Египет очень беден лесом, для строительства первых кораблей широко применялся папирус Особенности этого материала определили конструкцию и форму древнеегипетских судов. Это была серповидная, связанная из пучков папируса ладья с изогнутыми кверху носом и кормой. Для предания кораблю прочности корпус стягивался тросами. Позже, когда наладилась регулярная торговля с финикийцами и в Египет начал поступать в большом количестве ливанский кедр, дерево стало широко применяться при кораблестроении.

Представление о том, какие типы судов строились тогда, дают настенные рельефы некрополя близ Саккары, относящиеся к середине 3‑го тысячелетия до Р.Х. В этих композициях реалистически отображены отдельные стадии постройки дощатого корабля. Корпуса кораблей, не имевшие ни киля (в древности это была балка, лежащая в основании днища судна), ни шпангоутов (поперечных кривых брусьев, обеспечивающих прочность бортов и днища), набирались из простых плашек и конопатились папирусом. Укреплялся корпус посредством канатов, обтягивавших судно по периметру верхнего пояса обшивки. Такие суда едва ли обладали хорошими мореходными качествами. Однако для плаванья по реке они вполне годились. Используемый египтянами прямой парус позволял им плыть только по ветру. Такелаж крепился на двуногой мачте, обе ноги которой устанавливались перпендикулярно средней линии судна. В верхней части они плотно связывались. Степсом (гнездом) для мачты служило балочное устройство в корпусе судна. В рабочем положении эту мачту удерживали штаги - толстые тросы, шедшие от кормы и носа, а в сторону бортов ее поддерживали ноги. Прямоугольный парус крепился на двух реях. При боковом ветре мачту поспешно убирали.

Позднее, примерно к 2600 году до Р.Х., на смену двуногой мачте пришла применяемая и поныне одноногая. Одноногая мачта облегчала хождение под парусами и впервые дала судну возможность маневрировать. Однако прямоугольный парус был ненадежным средством, которым можно было пользоваться только при попутном ветре.

Основным двигателем корабля оставалась мускульная сила гребцов. По‑видимому, египтянам принадлежит важное усовершенствование весла - изобретение уключин. Их еще не было в Древнем царстве, но затем весло стали крепить с помощью веревочных петель. Это сразу позволило увеличить силу гребка и скорость судна. Известно, что отборные гребцы на судах фараонов делали 26 гребков в минуту, что позволяло развивать скорость 12 км/ч. Управляли такими кораблями с помощью двух рулевых весел, расположенных на корме. Позднее их стали крепить к балке на палубе, вращая которую можно было выбирать нужное направление (этот принцип управления судном с помощью поворота пера руля остается неизменным по сей день). Древние египтяне не были хорошими мореходами. На своих кораблях они не решались выходить в открытое море. Однако вдоль берега их торговые суда совершали далекие путешествия. Так, в храме царицы Хатшепсут есть надпись, сообщающая о морском походе, совершенном египтянами около 1490 года до Р.Х. в таинственную страну благовоний Пунт, находившуюся в районе современного Сомали.

Следующий шаг в развитии кораблестроения был сделан финикийцами. В отличие от египтян, финикийцы в избытке имели для своих судов прекрасный строительный материал. Их страна тянулась узкой полосой вдоль восточных берегов Средиземного моря. Обширные кедровые леса росли здесь почти у самого берега. Уже в древности финикийцы научились делать из их стволов высококачественные долбленные лодки‑однодревки и смело выходили на них в море.

В начале 3‑го тысячелетия до Р.Х., когда стала развиваться морская торговля, финикийцы начали строить корабли. Морское судно значительно отличается от лодки, для его сооружения необходимы свои конструкционные решения. Важнейшие открытия на этом пути, определившие всю дальнейшую историю судостроения, принадлежат финикийцам. Может быть, скелеты животных навели их на мысль установить на однодревках ребра жесткости, которые покрывали сверху досками. Так впервые в истории кораблестроения были применены шпангоуты, до сих пор имеющие широкое использование.

Точно так же финикийцы впервые построили килевое судно (первоначально килем служили два ствола, соединенные под углом). Киль сразу придал корпусу устойчивость и позволил установить продольные и поперечные связи. К ним крепились доски обшивки. Все эти новшества явились решающей основой для быстрого развития судостроения и определили облик всех последующих кораблей.

Так же вспоминались и иные изобретения в разных областях науки, таких как: химия, физика, медицина, образование и прочие.
Ведь как мы и говорили ранее, это неудивительно. Ведь любое открытие или изобретение - это очередной шаг в будущее, которое улучшает нашу жизнь, а зачастую его и продлевает. И если не каждое, то очень и очень многие открытия достойны называться великими и крайне необходимымы в нашей жизни.

Александр Озеров, по материалам книги Рыжкова К.В. "Сто великих изобретений"
Самые великие открытия и изобретения человечества © 2010

Прогресс не остановить

История человечества тесно связана с постоянным прогрессом, развитием технологий, новыми открытиями и изобретениями. Некоторые технологии устарели и стали историей, другие, такие как колесо или парус, используются до сих пор. Бесчисленное количество открытий было утрачено в водовороте времени, иные, не оценённые современниками, ждали признания и внедрения десятки и сотни лет.

Редакция Samogo.Net провела собственное исследование, призванное ответить на вопрос о том, какие же изобретения считаются нашими современниками наиболее значимым.

Обработка и анализ результатов интернет-опросов показали, что единого мнения на этот счёт попросту нет. Тем не менее, нам удалось сформировать общий уникальный рейтинг величайших изобретений и открытий в истории человечества. Как оказалось, не смотря на то, что наука давно ушла вперёд, базовые открытия в умах наших современников остаются наиболее значимыми.

Первое место бесспорно занял Огонь

Люди рано открыли полезные свойства огня - его способности освещать и согревать, изменять к лучшему растительную и животную пищу.

"Дикий огонь", который вспыхивал во время лесных пожаров или извержений вулканов, был страшен для человека, но, принеся огонь в свою пещеру, человек "приручил" его и "поставил" себе на службу. С этого времени огонь стал постоянным спутником человека и основой его хозяйства. В древние времена он был незаменимым источником тепла, света, средством для приготовления пищи, орудием охоты.
Однако и дальнейшие завоевания культуры (керамика, металлургия, сталеварение, паровые машины и т.п.) обязаны комплексному использованию огня.

Долгие тысячелетия люди пользовались "домашним огнем", поддерживали его из года в год в своих пещерах, прежде чем научились добывать его сами при помощи трения. Вероятно, это открытие произошло случайно, после того как наши предки научились сверлить дерево. Во время этой операции происходило нагревание древесины и при благоприятных условиях могло произойти воспламенение. Обратив на это внимание, люди стали широко пользоваться трением для добывания огня.

Простейший способ состоял в том, что брались две палочки сухого дерева, в одной из которых делали лунку. Первая палочка клалась на землю и прижималась коленом. Вторую вставляли в лунку, а затем начинали быстро-быстро вращать между ладонями. В то же время необходимо было с силой давить на палочку. Неудобство такого способа заключалось в том, что ладони постепенно сползали вниз. Приходилось то и дело поднимать их вверх и снова продолжать вращение. Хотя, при известной сноровке, это можно делать быстро, все же из-за постоянных остановок процесс сильно затягивался. Гораздо проще добыть огонь трением, работая вдвоем. При этом один человек удерживал горизонтальную палочку и давил сверху на вертикальную, а второй - быстро-быстро вращал ее между ладонями. Позже вертикальную палочку стали обхватывать ремешком, двигая который вправо и влево можно ускорить движение, а на верхний конец для удобства стали накладывать костяной колпачок. Таким образом, все устройство для добывания огня стало состоять из четырех частей: двух палочек (неподвижной и вращающейся), ремешка и верхнего колпачка. Таким способом можно было добывать огонь и в одиночку, если прижимать нижнюю палочку коленом к земле, а колпачок - зубами.

И только уже потом, с развитием человечества стали доступны иные способы получения открытого огня.

Второе место в ответах интернет-сообщества заняли Колесо и Повозка

Считается, что его прообразом, возможно, стали катки, которые подкладывались под тяжелые стволы деревьев, лодки и камни при их перетаскивании с места на место. Возможно, тогда же были сделаны первые наблюдения над свойствами вращающихся тел. Например, если бревно-каток по какой-то причине в центре было тоньше, чем по краям, оно передвигалось под грузом более равномерно и его не заносило в сторону. Заметив это, люди стали умышленно обжигать катки таким образом, что средняя часть становилась тоньше, а боковые оставались неизменными. Таким образом получилось приспособление, которое теперь называется "скатом".В ходе дальнейших усовершенствований в этом направлении от цельного бревна остались только два валика на его концах, а между ними появилась ось. Позднее их стали изготовлять отдельно, а затем жестко скреплять между собой. Так было открыто колесо в собственном смысле этого слова и появилась первая повозка.

В последующие века множество поколений мастеров потрудились над усовершенствованием этого изобретения. Первоначально сплошные колеса жестко скреплялись с осью и вращались вместе с ней. При передвижении по ровной дороге такие повозки были вполне пригодны для использования. На повороте, когда колеса должны вращаться с разной скоростью, это соединение создает большие неудобства, так как тяжело груженная повозка может легко сломаться или перевернуться. Сами колеса были еще очень несовершенны. Их делали из цельного куска дерева. Поэтому повозки были тяжелыми и неповоротливыми. Передвигались они медленно, и обычно в них запрягали неторопливых, но могучих волов.

Одна из древнейших повозок описываемой конструкции найдена при раскопках в Мохенджо-Даро. Крупным шагом вперед в развитии техники передвижения стало изобретение колеса со ступицей, насаживающегося на неподвижную ось. В этом случае колеса вращались независимо друг от друга. А чтобы колесо меньше терлось об ось, ее стали смазывать жиром или дегтем.

Ради уменьшения веса колеса в нем выпиливали вырезы, а для жесткости укрепляли поперечными скрепами. Ничего лучшего в эпоху каменного века придумать было нельзя. Но после открытия металлов стали изготавливать колеса с металлическим ободом и спицами. Такое колесо могло вращаться в десятки раз быстрее и не боялось ударов о камни. Запрягая в повозку быстроногих лошадей, человек значительно увеличил скорость своего передвижения. Пожалуй, трудно найти другое открытие, которое дало бы такой мощный толчок развитию техники.

Письменность

Третье место по праву заняла Письменность

Нет нужды говорить о том, какое великое значение в истории человечества имело изобретение письменности. Невозможно даже представить себе, каким путем могло пойти развитие цивилизации, если бы на определенном этапе своего развития люди не научились фиксировать с помощью определенных символов нужную им информацию и таким образом передавать и сохранять ее. Очевидно, что человеческое общество в таком виде, в каком оно существует сегодня, просто не могло бы появиться.

Первые формы письменности в виде особым образом начертанных знаков появилась около 4 тысяч лет до Р.Х. Но уже задолго до этого существовали различные способы передачи и хранения информации: с помощью определенным образом сложенных ветвей, стрел, дыма костров и тому подобных сигналов. Из этих примитивных систем оповещения позже появились более сложные способы фиксирования информации. Например, древние инки изобрели оригинальную систему "записи" с помощью узелков. Для этого использовались шнурки шерсти разного цвета. Их связывали разнообразными узелками и крепили на палочку. В таком виде "письмо" посылалось адресату. Существует мнение, что инки с помощью такого "узелкового письма" фиксировали свои законы, записывали хроники и стихи. "Узелковое письмо" отмечено и у других народов - им пользовались в древнем Китае и Монголии.

Рисунки для передачи информации

Однако письменность в собственном смысле этого слова появилась лишь после того, как люди для фиксации и передачи информации изобрели особые графические знаки. Самым древним видом письма считается пиктографическое. Пиктограмма представляет собой схематический рисунок, который непосредственно изображает вещи, события, и явления, о которых идет речь. Предполагается, что пиктография была широко распространена у различных народов на последней стадии каменного века. Это письмо очень наглядно, и поэтому ему не надо специально учиться. Оно вполне пригодно для передачи небольших сообщений и для записи несложных рассказов. Но когда возникала потребность передать какую-нибудь сложную абстрактную мысль или понятие, сразу ощущались ограниченные возможности пиктограммы, которая совершенно не приспособлена к записи того, что не поддается рисунчатому изображению (например, таких понятий, как бодрость, храбрость, зоркость, хороший сон, небесная лазурь и т.п.). Поэтому уже на ранней стадии истории письма в число пиктограмм стали входить особые условные значки, обозначающие определенные понятия (например, знак скрещенных рук символизировал обмен). Такие значки называются идеограммами. Идеографическое письмо возникло и пиктографического, причем можно вполне отчетливо представить себе, как это произошло: каждый изобразительный знак пиктограммы стал все более обособляться от других и связываться с определенным словом или понятием, обозначая его. Постепенно этот процесс настолько развился, что примитивные пиктограммы утратили свою прежнюю наглядность, но зато обрели четкость и определенность. Процесс этот занял долгое время, быть может, несколько тысячелетий.

Высшей формой идеограммы стало иероглифическое письмо. Впервые оно возникло в Древнем Египте. Позже иероглифическая письменность получила широкое распространение на Дальнем Востоке - в Китае, Японии и Корее. С помощью идеограмм можно было отразить любую, даже самую сложную и отвлеченную мысль. Однако для не посвященных в тайну иероглифов смысл написанного был совершенно непонятен. Каждый, кто хотел научиться писать, должен был запомнить несколько тысяч значков. Реально на это уходило несколько лет постоянных упражнений. Поэтому писать и читать в древности умели немногие.

Только в конце 2 тыс. до Р.Х. древние финикийцы изобрели буквенно- звуковой алфавит, который послужил образцом для алфавитов многих других народов. Финикийский алфавит состоял из 22 согласных букв, каждая из которых обозначала отдельный звук. Изобретение этого алфавита стало для человечества большим шагом вперед. При помощи нового письма легко было передать графически любое слово, не прибегая к идеограммам. Обучиться ему было очень просто. Искусство письма перестало быть привилегией просвещенных. Оно стало достоянием всего общества или, по крайней мере, большей его части. Это послужило одной из причин быстрого распространения финикийского алфавита по всему миру. Как считают, четыре пятых всех известных ныне алфавитов возникло из финикийского.

Так, из разновидности финикийского письма (пунического) развилось ливийское. Непосредственно от финикийского произошло древнееврейское, арамейское и греческое письмо. В свою очередь, на основе арамейского письма сложились арабская, набатейская, сирийская, персидская и другие письменности. Греки внесли в финикийский алфавит последнее важное усовершенствование - они стали обозначать буквами не только согласные, но и гласные звуки. Греческий алфавит лег в основу большинства европейских алфавитов: латинского (от которого в свою очередь произошли французский, немецкий, английский, итальянский, испанский и др. алфавиты), коптского, армянского, грузинского и славянского (сербского, русского, болгарского и др.).

Бумага для письма

Четвертое место, вслед за письменностью занимает Бумага

Ее создателями были китайцы. И это не случайно. Во-первых, Китай уже в глубокой древности славился книжной премудростью и сложной системой бюрократического управления, требовавшей от чиновников постоянной отчетности. Поэтому здесь всегда ощущалась потребность в недорогом и компактном материале для письма. До изобретения бумаги в Китае писали или на бамбуковых дощечках, или на шелке.

Но шелк был всегда очень дорогим, а бамбук - очень громоздким и тяжелым. (На одной дощечке помещалось в среднем 30 иероглифов. Легко представить, сколько места должна была занимать такая бамбуковая "книга". Не случайно пишут, что для перевозки некоторых сочинений требовалась целая телега.) Во-вторых, одни только китайцы долгое время знали секрет производства шелка, а бумажное дело как раз и развивалось из одной технической операции обработки шелковых коконов. Эта операция заключалась в следующем. Женщины, занимавшиеся шелководством, варили коконы шелкопряда, затем, разложив их на циновку, опускали в воду и перетирали до образования однородной массы. Когда массу вынимали и отцеживали воду, получалась шелковая вата. Однако после такой механической и тепловой обработки ни циновках оставался тонкий волокнистый слой, превращавшийся после просушки в лист очень тонкой бумаги, пригодной для письма. Позже работницы стали использовать бракованные коконы шелкопряда для целенаправленного изготовления бумаги. При этом они повторяли уже знакомый им процесс: варили коконы, промывали и измельчали до получения бумажной массы, наконец, высушивали получившиеся листы. Такая бумага называлась "ватной" и стоила достаточно дорого, так как дорого было само сырье.

Распространение бумаги

Естественно, что в конце концов возник вопрос: можно ли бумагу делать только из шелка или для приготовления бумажной массы может подойти любое волокнистое сырье, в том числе растительного происхождения? В 105 г. некто Цай Лунь, важный чиновник при дворе ханьского императора, приготовил новый сорт бумаги из старых рыболовных сетей. По качеству она не ступала шелковой, но была значительно дешевле. Это важное открытие имело огромные последствия не только для Китая, но и для всего мира - впервые в истории люди получили первоклассный и доступный материал для письма, равноценной замены которому не и по сей день. Имя Цай Луня поэтому по праву входит в число имен величайших изобретателей в истории человечества. В последующие века в процесс изготовления бумаги было внесено несколько важных усовершенствований, благодаря чему оно стало быстро развиваться.

В IV веке бумага совершенно вытеснила из употребления бамбуковые дощечки. Новые опыты показали, что бумагу можно делать из дешевого растительного сырья: древесной коры, тростника и бамбука. Последнее было особенно важно, так как бамбук произрастает в Китае в огромном количестве. Бамбук расщепляли на тонкие лучинки, замачивали с известью, а полученную массу вываривали затем в течение нескольких суток. Отцеженную гущу выдерживали в специальных ямах, тщательно размалывали специальными билами и разбавляли водой до образования клейкой, кашицеобразной массы. Эту массу зачерпывали с помощью специальной формы - бамбукового сита, укрепленного на подрамнике. Тонкий слой массы вместе с формой клали под пресс. Затем форма вытаскивалась и под прессом оставался только бумажный лист. Спрессованные листы снимали с сита, складывали в кипу, сушили, разглаживали и резали по формату.

С течением времени китайцы достигли высочайшего искусства в изготовлении бумаги. На протяжении нескольких веков они, по своему обыкновению, тщательно хранили секреты бумажного производства. Но в 751 году во время столкновения с арабами в предгорьях Тянь-Шаня несколько китайских мастеров попали в плен. От них арабы научились сами делать бумагу и в течение пяти веков очень выгодно сбывали ее в Европу. Европейцы были последними из цивилизованных народов, которые научились сами изготавливать бумагу. Первыми это искусство переняли от арабов испанцы. В 1154 году бумажное производство было налажено и в Италии, в 1228-м в Германии, в 1309-м в Англии. В последующие века бумага получила во всем мире широчайшее распространение, постепенно завоевывая все новые и новые сферы применения. Значение ее в нашей жизни столь велико, что, по мнению известного французского библиографа А. Сима, нашу эпоху можно с полным правом назвать "бумажной эрой".

Порох в истории Европы

Пятое место заняли Порох и Огнестрельное оружие

Изобретение пороха и распространение его в Европе имело огромные последствия для дальнейшей истории человечества. Хотя европейцы последними из цивилизованных народов научились делать эту взрывчатую смесь, именно они сумели извлечь из ее открытия наибольшую практическую пользу. Бурное развитие огнестрельного оружия и революция в военном деле были первыми следствиями распространения пороха. Это в свою очередь повлекло за собой глубочайшие социальные сдвиги: закованные в латы рыцари и их неприступные замки оказались бессильны перед огнем пушек и аркебуз. Феодальному обществу был нанесен такой удар, от которого оно уже не смогло оправиться. В короткое время многие европейские державы преодолели феодальную раздробленность и превратились в могущественные централизованные государства.

В истории техники найдется мало изобретений, которые привели бы к таким грандиозным и далеко идущим изменениям. До того как порох стал известен на западе, он уже имел многовековую историю на востоке, а изобрели его китайцы. Важнейшей составной частью пороха является селитра. В некоторых областях Китая она встречалась в самородном виде и была похожа на хлопья снега, припорошившего землю. Позже открыли, что селитра образуется в местностях, богатых щелочами и гниющими (доставляющими азот) веществами. Разжигая огонь, китайцы могли наблюдать вспышки, возникавшие при горении селитры с углем.

Состав пороха

Впервые свойства селитры описал китайский медик Тао Хун-цзин, живший на рубеже V и VI столетий. С этого времени она применялась как составная часть некоторых лекарств. Алхимики часто пользовались ей, проводя опыты. В VII веке один из них, Сунь Сы-мяо, приготовил смесь из серы и селитры, добавив к ним несколько долей локустового дерева. Нагревая эту смесь в тигле, он вдруг получил сильнейшую вспышку пламени. Этот опыт он описал в своем трактате "Дань цзин". Считается, что Сунь Сы-мяо приготовил один из первых образцов пороха, который, правда, не обладал еще сильным взрывчатым эффектом.

В дальнейшем состав пороха был усовершенствован другими алхимиками, установившими опытным путем три его основных компонента: уголь, серу и калиевую селитру. Средневековые китайцы не могли научно объяснить, что за взрывная реакция происходит при воспламенении пороха, но они очень скоро научились использовать ее в военных целях. Правда, в их жизни порох вовсе не имел того революционного влияния, которое оказал позже на европейское общество. Объясняется это тем, что мастера долгое время готовили пороховую смесь из неочищенных компонентов. Между тем неочищенная селитра и сера, содержащая посторонние примеси, не давали сильного взрывного эффекта. Несколько веков порох использовался исключительно в качестве зажигательного средства. Позднее, когда его качество улучшилось, порох стали применять как взрывчатое вещество при изготовлении фугасов, ручных гранат и взрывпакетов.

Оружейный порох

Но и после этого долгое время не догадывались использовать силу возникавших при горении пороха газов для метания пуль и ядер. Только в XII-XIII веках китайцы стали пользоваться оружием, очень отдаленно напоминавшем огнестрельное, но зато они изобрели петарду и ракету. От китайцев секрет пороха узнали арабы и монголы. В первой трети XIII века арабы достигли большого искусства в пиротехнике. Они употребляли селитру во многих соединениях, мешая ее с серой и углем, добавляли к ним другие компоненты и устраивали фейерверки удивительной красоты. От арабов состав пороховой смеси стал известен европейским алхимикам. Один из них, Марк Грек, уже в 1220 году записал в своем трактате рецепт пороха: 6 частей селитры на 1 часть серы и 1 часть угля. Позже достаточно точно о составе пороха писал Роджер Бэкон.

Однако прошло еще около ста лет, прежде чем рецепт этот перестал быть тайной. Это вторичное открытие пороха связывают с именем другого алхимика, фейбургского монаха Бертольда Шварца. Однажды он стал толочь в ступке измельченную смесь из селитры, серы и угля, в результате чего произошел взрыв, опаливший Бертольду бороду. Этот или другой опыт подал Бертольду мысль использовать силу пороховых газов для метания камней. Считается, что он изготовил одно из первых в Европе артиллерийских орудий.

Первоначально порох представлял собой тонкий мукообразный порошок. Пользоваться им было не удобно, так как при зарядке орудий и аркебузов пороховая мякоть липла к стенкам ствола. Наконец заметили, что порох в виде комочков гораздо удобнее - он легко заряжался и при воспламенении давал больше газов (2 фунта пороха в комьях давали больший эффект, чем 3 фунта в мякоти).

В первой четверти XV века для удобства стали употреблять зерновой порох, получавшийся путем раскатывания пороховой мякоти (со спиртом и другими примесями) в тесто, которое затем пропускали через решето. Чтобы зерна не перетирались при транспортировке, их научились полировать. Для этого их помещали в специальный барабан, при раскручивании которого зерна ударялись и терлись друг о друга и уплотнялись. После обработки их поверхность становилась гладкой и блестящей.

Средства связи

Шестое место в опросах заняли: телеграф, телефон, интернет, радио и прочие виды современной коммуникации

Вплоть до середины XIX века единственным средством сообщения между европейским континентом и Англией, между Америкой и Европой, между Европой и колониями оставалась пароходная почта. О происшествиях и событиях в других странах узнавали с опозданием на целые недели, а порой и месяцы. Например, известия из Европы в Америку доставлялись через две недели, и это был еще не самый долгий срок. Поэтому создание телеграфа отвечало самым настоятельным потребностям человечества.

После того, как это техническая новинка появилась во всех концах света и земной шар опоясали телеграфные линии, требовались только часы, а порой и минуты, на то, чтобы новость по электрическим проводам из одного полушария примчалась в другое. Политические и биржевые сводки, личные и деловые сообщения в тот же день могли быть доставлены заинтересованным лицам. Таким образом, телеграф следует отнести к одному из важнейших изобретений в истории цивилизации, потому что вместе с ним человеческий разум одержал величайшую побед над расстоянием.

С изобретением телеграфа была решена задача передачи сообщений на большие расстояния. Однако телеграф мог переслать только письменные депеши. Между тем многие изобретатели мечтали о более совершенном и коммуникабельном способе связи, с помощью которого можно было бы передавать на любые расстояния живой звук человеческой речи или музыку. Первые эксперименты в этом направлении предпринял в 1837 году американский физик Пейдж. Суть опытов Пейджа была очень проста. Он собрал электрическую цепь, в которую входили камертон, электромагнит, и гальванические элементы. Во время своих колебаний камертон быстро размыкал и замыкал цепь. Этот прерывистый ток передавался на электромагнит, который так же быстро притягивал и отпускал тонкий стальной стержень. В результате этих колебаний стержень производил поющий звук, подобный тому, который издавал камертон. Таким образом, Пейдж показал, что передавать звук с помощью электрического тока в принципе возможно, надо только создать более совершенные передающие и принимающие устройства.

И уже в последствии, в результате долгих поисков, открытий и изобретений, появились мобильный телефон, телевидение, интернет и прочие средства коммуникации человечества, без которых невозможно себе представить нашу современную жизнь.

Автомобиль изменил планету

Седьмое место в топ-10 по результатам опросов занял Автомобиль

Автомобиль принадлежит к числу тех величайших изобретений, которые, подобно колесу, пороху или электрическому току, имели колоссальное влияние не только на породившую их эпоху, но и на все последующие времена. Его многогранное воздействие далеко не ограничивается сферой транспорта. Автомобиль сформировал современную индустрию, породил новые отрасли промышленности, деспотически перестроил само производство, впервые придав ему массовый, серийный и поточный характер. Он преобразил внешний облик планеты, которая опоясалась миллионами километров шоссейных дорог, оказал давление на экологию и поменял даже психологию человека. Влияние автомобиля сейчас настолько многопланово, что ощущается во всех сферах человеческой жизни. Он сделался как бы зримым и наглядным воплощением технического прогресса вообще, со всеми его достоинствами и недостатками.

В истории автомобиля было много удивительных страниц, но, возможно, самая яркая из них относится к первым годам его существования. Не может не поражать стремительность, с которой это изобретение прошло путь от появления до зрелости. Понадобилась всего четверть века на то, чтобы автомобиль из капризной и еще ненадежной игрушки превратился в самое популярное и широко распространенное транспортное средство. Уже в начале XX века он был в главных чертах идентичен современному автомобилю.

Предшественники автомобиля

Непосредственным предшественником бензинового автомобиля стал паромобиль. Первым практически действовавшим паровым автомобилем считается паровая телега, построенная французом Кюньо в 1769 году. Перевозя до 3 тонн груза, она передвигалась со скоростью всего 2‑4 км/ч. Были у нее и другие недостатки. Тяжелая машина очень плохо слушалась руля, постоянно наезжала на стены домов и заборы, производя разрушения и терпя немалый урон. Две лошадиные силы, которые развивал ее двигатель, давались с трудом. Несмотря на большой объем котла, давление быстро падало. Через каждые четверть часа для поддержания давления приходилось останавливаться и разжигать топку. Одна из поездок закончилась взрывом котла. К счастью, сам Кюньо остался жив.

Последователи Кюньо оказались удачливее. В 1803 году уже известный нам Тривайтик построил первый в Великобритании паровой автомобиль. Машина имела огромные задние колеса около 2, 5 м в диаметре. Между колесами и задней частью рамы крепился котел, который обслуживал стоявший на запятках кочегар. Паромобиль был снабжен единственным горизонтальным цилиндром. От штока поршня через шатунно‑кривошипный механизм вращалось ведущее зубчатое колесо, которое находилось в зацеплении с другим зубчатым колесом, укрепленным на оси задних колес. Ось этих колес шарнирно соединялась с рамой и поворачивалась при помощи длинного рычага водителем, сидящим на высоком облучке. Кузов подвешивался на высоких С‑образных рессорах. С 8‑10 пассажирами автомобиль развивал скорость до 15 км/ч, что, несомненно, являлось очень неплохим для того времени достижением. Появление этой удивительной машины на улицах Лондона привлекало массу зевак, не скрывавших своего восторга.

Автомобиль в современном виде

Автомобиль в современном смысле этого слова появился только после создания компактного и экономичного двигателя внутреннего сгорания, который произвел подлинный переворот в транспортной технике.
Первый автомобиль с бензиновым двигателем построил в 1864 году австрийский изобретатель Зигфрид Маркус. Увлекаясь пиротехникой, Маркус однажды поджег электрической искрой смесь паров бензина и воздуха. Пораженный силой последовавшего взрыва, он решил создать двигатель, в котором бы этот эффект нашел применение. В конце концов ему удалось построить двухтактный бензиновый двигатель с электрическим зажиганием, который он и установил на обыкновенную повозку. В 1875 году Маркус создал более совершенный автомобиль.

Официальная слава изобретателей автомобиля принадлежит двум немецким инженерам - Бенцу и Даймлеру. Бенц конструировал двухтактные газовые двигатели и являлся хозяином небольшого завода по их производству. Двигатели имели хороший спрос, и предприятие Бенца процветало. Он имел достаточно средств и досуга для других разработок. Мечтой Бенца было создание самодвижущегося экипажа с двигателем внутреннего сгорания. Собственный двигатель Бенца, как и четырехтактный двигатель Отто, для этого не годился, поскольку они имели малую скорость хода (около 120 оборотов в минуту). При некотором понижении числа оборотов они глохли. Бенц понимал, что машина, снабженная таким мотором, будет останавливаться перед каждым бугорком. Нужен был быстроходный двигатель с хорошей системой зажигания и аппаратом для образования горючей смеси.

Автомобили быстро совершенствовались Еще в 1891 году Эдуард Мишлен, владелец завода резиновых изделий в Клермон‑Ферране, изобрел съемную пневматическую шину для велосипеда (камера Данлопа заливалась в покрышку и приклеивалась к ободу). В 1895 году начался выпуск съемных пневматических шин для автомашин. Впервые эти шины были опробованы в том же году на гонке Париж - Бордо - Париж. Оснащенный ими «Пежо» с трудом доехал до Руана, а потом был вынужден сойти с дистанции, так как шины беспрерывно прокалывались. Тем не менее специалисты и автолюбители были поражены плавностью хода машины и комфортностью езды на ней. С этого времени пневматические шины постепенно вошли в жизнь, и ими стали оснащаться все автомобили. Победителем же на этих гонках был опять Левассор. Когда он остановил машину на финише и ступил на землю, то сказал: «Это было безумие. Я делал 30 километров в час!» Сейчас на месте финиша стоит памятник в честь этой знаменательной победы.

Лампочка для освещения

Восьмое место - Электрическая лампочка

В последние десятилетия XIX века в жизнь многих европейских городов вошло электрическое освещение. Появившись сначала на улицах и площадях, оно очень скоро проникло в каждый дом, в каждую квартиру и сделалось неотъемлемой частью жизни каждого цивилизованного человека. Это было одно из важнейших событий в истории техники, имевшее огромные и многообразные последствия. Бурное развитие электрического освещения привело к массовой электрификации, перевороту в энергетике и крупным сдвигам в промышленности. Однако всего этого могло и не случиться, если бы усилиями многих изобретателей не было создано такое обычное и привычное для нас устройство, как электрическая лампочка. В числе величайших открытий человеческой истории ей, несомненно, принадлежит одно из самых почетных мест.

В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые. Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня. При достаточно большом напряжении между ними образуется свет ослепительной силы.

Впервые явление вольтовой дуги наблюдал в 1803 году русский ученый Василий Петров. В 1810 году то же открытие сделал английский физик Деви. Оба они получили вольтову дугу, пользуясь большой батареей элементов, между концами стерженьков из древесного угля. И тот, и другой писали, что вольтова дуга может использоваться в целях освещения. Но прежде надо было найти более подходящий материал для электродов, поскольку стержни из древесного угля сгорали за несколько минут и были малопригодны для практического использования. Дуговые лампы имели и другое неудобство - по мере выгорания электродов надо было постоянно подвигать их навстречу друг другу. Как только расстояние между ними превышало некий допустимый минимум, свет лампы становился неровным, она начинала мерцать и гасла.

Усовершенствование лампочки

Первую дуговую лампу с ручным регулированием длины дуги сконструировал в 1844 году французский физик Фуко. Древесный уголь он заменил палочками из твердого кокса. В 1848 году он впервые применил дуговую лампу для освещения одной из парижских площадей. Это был, короткий и весьма дорогой опыт, так как источником электричества служила мощная батарея. Затем были придуманы различные приспособления, управляемые часовым механизмом, которые автоматически сдвигали электроды по мере их сгорания.
Понятно, что с точки зрения практического использования желательно было иметь лампу, не осложненную дополнительными механизмами. Но можно ли было обойтись без них? Оказалось, что да. Если поставить два уголька не друг против друга, а параллельно, притом так, чтобы дуга могла образовываться только между двумя их концами, то при этом устройстве расстояние между концами углей всегда сохраняется неизменным. Конструкция такой лампы кажется очень простой, однако создание ее потребовало большой изобретательности. Она была придумана в 1876 году русским электротехником Яблочковым, который работал в Париже в мастерской академика Бреге.

В 1879 году за усовершенствование электрической лампочки взялся знаменитый американский изобретатель Эдисон. Он понимал: для того, чтобы лампочка светила ярко и долго и имела ровный немигающий свет, необходимо, во‑первых, найти подходящий материал для нити, и, во‑вторых, научиться создавать в баллоне сильно разреженное пространство. Было проделано множество экспериментов с различными материалами, которые ставились со свойственным для Эдисона размахом. Подсчитано, что его помощники опробовали не менее 6000 различных веществ и соединений, при этом на опыты было израсходовано свыше 100 тысяч долларов. Сначала Эдисон заменил ломкий бумажный уголек более прочным, приготовленным из угля, потом стал делать опыты с различными металлами и наконец остановился на нити из обугленных бамбуковых волокон. В том же году в присутствии трех тысяч человек Эдисон публично демонстрировал свои электрические лампочки, осветив ими свой дом, лабораторию и несколько прилегающих улиц. Это была первая лампочка с продолжительным сроком службы, пригодная для массового производства.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»