Показательные уравнения. Исчерпывающее руководство (2019)

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

1º. Показательными уравнениями называют уравнения, содержащие переменную в показателе степени.

Решение показательных уравнений основано на свойстве степени: две степени с одним и тем же основание равны тогда и только тогда, когда равны их показатели.

2º. Основные способы решения показательных уравнений :

1) простейшее уравнение имеет решение ;

2) уравнение вида логарифмированием по основанию a сводят к виду ;

3) уравнение вида равносильно уравнению ;

4) уравнение вида равносильно уравнению .

5) уравнение вида через замену сводят к уравнению , а затем решают совокупность простейших показательных уравнений ;

6) уравнение со взаимно обратными величинами заменой сводят к уравнению , а затем решают совокупность уравнений ;

7) уравнения, однородные относительно a g (x) и b g (x) при условии вида через замену сводят к уравнению , а затем решают совокупность уравнений .

Классификация показательных уравнений.

1. Уравнения, решаемые переходом к одному основанию .

Пример 18. Решить уравнение .

Решение: Воспользуемся тем, что все основания степеней являются степенями числа 5: .

2. Уравнения, решаемые переходом к одному показателю степени .

Эти уравнения решаются преобразованием исходного уравнения к виду , которое использованием свойства пропорции приводится к простейшему.

Пример 19. Решить уравнение:

3. Уравнения, решаемые вынесением общего множителя за скобки .

Если в уравнении каждый показатель степени отличается от другого на некоторое число, то уравнения решаются вынесением за скобки степени с наименьшим показателем.

Пример 20. Решить уравнение .

Решение: Вынесем в левой части уравнения степень с наименьшим показателем за скобки:



Пример 21. Решить уравнение

Решение: Сгруппируем отдельно в левой части уравнения слагаемые, содержащие степени с основанием 4, в правой части – с основанием 3, затем вынесем степени с наименьшим показателем за скобки:

4. Уравнения, сводящиеся к квадратным (или кубическим) уравнениям .

К квадратному уравнению относительно новой переменной y сводятся уравнения:

а) вида подстановкой , при этом ;

б) вида подстановкой , при этом .

Пример 22. Решить уравнение .

Решение: Сделаем замену переменной и решим квадратное уравнение:

.

Ответ: 0; 1.

5. Однородные относительно показательных функций уравнения.

Уравнение вида является однородным уравнением второй степени относительно неизвестных a x и b x . Такие уравнения сводятся предварительным делением обеих частей на и последующей подстановкой к квадратным уравнениям.

Пример 23. Решить уравнение .

Решение: Разделим обе части уравнения на :

Положив , получим квадратное уравнение с корнями .

Теперь задача сводится к решению совокупности уравнений . Из первого уравнения находим, что . Второе уравнение не имеет корней, так как при любых значения x .

Ответ: -1/2.

6. Рациональные относительно показательных функций уравнения .

Пример 24. Решить уравнение .

Решение: Разделим числитель и знаменатель дроби на 3 x и получим вместо двух – одну показательную функцию:

7. Уравнения вида .

Такие уравнения с множеством допустимых значений (ОДЗ), определяемым условием , логарифмированием обеих частей уравнения приводятся к равносильному уравнению , которые в свою очередь равносильны совокупности двух уравнений или .

Пример 25. Решить уравнение: .

.

Дидактический материал.

Решите уравнения:

1. ; 2. ; 3. ;

4. ; 5. ; 6. ;

9. ; 10. ; 11. ;

14. ; 15. ;

16. ; 17. ;

18. ; 19. ;

20. ; 21. ;

22. ; 23. ;

24. ; 25. .

26. Найдите произведение корней уравнения .

27. Найдите сумму корней уравнения .

Найдите значение выражения:

28. , где x 0 – корень уравнения ;

29. , где x 0 целый корень уравнения .

Решите уравнение:

31. ; 32. .

Ответы: 1. 0; 2. -2/9; 3. 1/36; 4. 0, 0.5; 5. 0; 6. 0; 7. -2; 8. 2; 9. 1, 3; 10. 8; 11. 5; 12. 1; 13. ¼; 14. 2; 15. -2, -1; 16. -2, 1; 17. 0; 18. 1; 19. 0; 20. -1, 0; 21. -2, 2; 22. -2, 2; 23. 4; 24. -1, 2; 25. -2, -1, 3; 26. -0.3; 27. 3; 28. 11; 29. 54; 30. -1, 0, 2, 3; 31. ; 32. .

Тема №8.

Показательные неравенства.

1º. Неравенство, содержащее переменную в показателе степени, называется показательным неравенством.

2º. Решение показательных неравенств вида основано на следующих утверждениях:

если , то неравенство равносильно ;

если , то неравенство равносильно .

При решении показательных неравенств используют те же приемы, что и при решении показательных уравнений.

Пример 26. Решить неравенство (методом перехода к одному основанию ).

Решение: Так как , то заданное неравенство можно записать в виде: . Так как , то данное неравенство равносильно неравенству .

Решив последнее неравенство, получим .

Пример 27. Решить неравенство: (методом вынесения общего множителя за скобки ).

Решение: Вынесем за скобки в левой части неравенства , в правой части неравенства и разделим обе части неравенства на (-2), поменяв знак неравенства на противоположный:

Так как , то при переходе к неравенству показателей знак неравенства опять меняется на противоположный. Получаем . Таким образом, множество всех решений данного неравенства есть интервал .

Пример 28. Решить неравенство (методом введения новой переменной ).

Решение: Пусть . Тогда данное неравенство примет вид: или , решением которого является интервал .

Отсюда . Поскольку функция возрастает, то .

Дидактический материал.

Укажите множество решений неравенства:

1. ; 2. ; 3. ;

6. При каких значениях x точки графика функции лежат ниже прямой ?

7. При каких значениях x точки графика функции лежат не ниже прямой ?

Решите неравенство:

8. ; 9. ; 10. ;

13. Укажите наибольшее целое решение неравенства .

14. Найдите произведение наибольшего целого и наименьшего целого решений неравенства .

Решите неравенство:

15. ; 16. ; 17. ;

18. ; 19. ; 20. ;

21. ; 22. ; 23. ;

24. ; 25. ; 26. .

Найдите область определения функции:

27. ; 28. .

29. Найдите множество значений аргумента, при которых значения каждой из функций больше 3:

и .

Ответы: 11. 3; 12. 3; 13. -3; 14. 1; 15. (0; 0,5); 16. ; 17. (-1; 0)U(3; 4); 18. [-2; 2]; 19. (0; +∞); 20. (0; 1); 21. (3; +∞); 22. (-∞; 0)U(0,5; +∞); 23. (0; 1); 24. (-1; 1); 25. (0; 2]; 26. (3; 3,5)U (4; +∞); 27. (-∞; 3)U{5}; 28. }

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»