Электромагнитные поля (ЭМП, ЭМИ) Определение и нормативы СанПиН. Электромагнитное поле

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Электромагни́тное по́ле, особая форма материи. Посредством электромагнитного поля осуществляется взаимодействие между заряженными частицами.

Поведение электромагнитного поля изучает классическая электродинамика . Электромагнитное поле описывается Уравнениями Максвелла , которые связывают величины, характеризующие поле, с его источниками, то есть с зарядами и токами, распределенными в пространстве. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами; при ускоренном движении частиц электромагнитное поле «отрывается» от них и существует независимо в форме электромагнитных волн .

Из уравнений Максвелла следует, что переменное электрическое поле порождает магнитное, а переменное магнитное поле порождает электрическое, поэтому электромагнитное поле может существовать и в отсутствие зарядов. Порождение электромагнитного поля переменным магнитным полем и магнитного поля переменным электрическим приводит к тому, что электрические и магнитные поля не существуют обособленно, независимо друг от друга. Поэтому электромагнитное поле есть вид материи, определяющийся во всех точках двумя векторными величинами, которые характеризуют две его составляющие - «электрическое поле» и «магнитное поле», и оказывающий силовое воздействие на заряженные частицы, зависящее от их скорости и величины их заряда.

Электромагнитное поле в вакууме, то есть в свободном состоянии, не связанное с частицами вещества, существует в виде электромагнитных волн, и распространяется в пустоте при отсутствии весьма сильных гравитационных полей со скоростью, равной скорости света c = 2, 998 . 10 8 м/с. Такое поле характеризуется напряженностью электрического поля Е и индукцией магнитного поля В . Для описания электромагнитного поля в среде используют также величины электрической индукции D и напряженности магнитного поля Н . В веществе, а также при наличии весьма сильных гравитационных полей, то есть вблизи весьма больших масс вещества, скорость распространения электромагнитного поля меньше величины c .

Компоненты векторов, характеризующих электромагнитное поле, образуют, согласно теории относительности , единую физическую величину - тензор электромагнитного поля, компоненты которого преобразуются при переходе от одной инерциальной системы отсчета к другой в соответствии с преобразованиями Лоренца .

Электромагнитное поле обладает энергией и импульсом. Существование импульса электромагнитного поля впервые было обнаружено экспериментально в опытах П. Н. Лебедева по измерению давления света в 1899 г. Электромагнитное поле всегда обладает энергией. Плотность энергии электромагнитного поля = 1/2(ЕD+ВН) .

Электромагнитное поле распространяется в пространстве. Плотность потока энергии электромагнитного поля определяется вектором Пойтинга S = , единица измерения Вт/м 2 . Направление вектора Пойтинга перпендикулярно E и H и совпадает с направлением распространения электромагнитной энергии. Его величина равна энергии, переносимой через единичную площадку, перпендикулярную S за единицу времени. Плотность импульса поля в вакууме К = S/с 2 = /с 2 .

При больших частотах электромагнитного поля существенными становятся его квантовые свойства и электромагнитное поле можно рассматривать как поток квантов поля - фотонов . В этом случае электромагнитное поле описывается

Электромагнитные поля и излучения окружают нас повсюду. Достаточно щелкнуть выключателем - и загорается свет, включить компьютер - и вы в Интернете, набрать номер на мобильном телефоне - и можно общаться с далекими континентами. Фактически именно электрические приборы создали современный мир таким, каким мы его знаем. Однако в последнее время все чаще поднимается вопрос о том, что электромагнитные поля (ЭМП), генерируемые электрооборудованием, вредны. Так ли это? Попробуем разобраться.

Начнем с определения. Электромагнитные поля, как известно из школьного курса физики, представляют собой особый Ключевая особенность подобных полей - это способность определенным образом взаимодействовать с телами и частицами, обладающими электрическим зарядом. Как следует из названия, электромагнитные поля являются совокупностью магнитного и электрического полей, причем в данном случае они так тесно взаимосвязаны, что их считают единым целым. Особенности взаимодействия с заряженными объектами объясняются с помощью

Впервые электромагнитные поля были математически выражены в теории Максвеллом в 1864 году. Собственно, именно он выявил неделимость магнитного и электрического полей. Одним из следствий теории являлся тот факт, что любое возмущение (изменение) электромагнитного поля является причиной появления электромагнитных волн, распространяющихся в вакууме со Расчеты показали, что свет (все части спектра: инфракрасный, видимый, ультрафиолетовый) является именно электромагнитной волной. Вообще, классифицируя излучения по длине волны, различают рентгеновское, радио и пр.

Появлению теории Максвелла предшествовали работы Фарадея (в 1831 г.) по исследованию в проводнике, двигающемся или находящемся в периодически изменяющемся магнитном поле. Еще ранее, в 1819 году, Х. Эрстед обратил внимание, что если рядом с проводником с током поместить компас, то его стрелка отклоняется от естественного что позволило предположить о непосредственной связи магнитных и электрических полей.

Все это свидетельствует о том, что любой электроприбор является генератором электромагнитных волн. Данное свойство особенно ярко выражено для некоторых специфичных приборов и высокотоковых цепей. Как первые, так и вторые сейчас присутствуют практически в каждом доме. Так как ЭМП распространяется не только в проводящих материалах, но и в диэлектриках (например, вакуум), то человек постоянно находится в зоне их действия.

Если раньше, когда в помещении была только «лампочка Ильича», вопрос никого не беспокоил. Сейчас все иначе: измерение электромагнитного поля выполняется с помощью специальных приборов для измерения напряженности поля. Фиксируются обе составляющие ЭМП в определенном диапазоне частот (зависит от чувствительности прибора). В документе СанПиН указывается ПДН (допустимая норма). На предприятиях и в крупных компаниях периодически выполняются проверки ПДН ЭМП. Стоит отметить, что окончательных результатов исследований воздействия ЭМП на живые организмы все еще нет. Поэтому, например, при работе с вычислительной техникой рекомендуется организовывать 15-минутные перерывы после каждого часа - на всякий случай… Все объясняется довольно просто: вокруг проводника есть значит, присутствует и ЭМП. Оборудование полностью безопасно в том случае, когда из розетки выдернут шнур питания.

Очевидно, что полностью отказаться от использования электрической техники мало кто решится. Однако дополнительно обезопасить себя можно путем подключения домашних приборов в заземленную сеть, что позволяет потенциалу не собираться на корпусе, а «стекать» в контур заземления. Различные удлинители, особенно смотанные в кольца, усиливают ЭМП за счет взаимоиндукции. И, конечно, следует избегать близкого размещения сразу нескольких включенных приборов.

Что такое электромагнитное поле, как оно влияет на здоровье человека и зачем его измерять — вы узнаете из этой статьи. Продолжая знакомить вас с ассортиментом нашего магазина, расскажем о полезных приборах — индикаторах напряженности электромагнитного поля (ЭМП). Они могут применяться как на предприятиях, так и в быту.

Что такое электромагнитное поле?

Современный мир немыслим без бытовой техники, мобильных телефонов, электричества, трамваев и троллейбусов, телевизоров и компьютеров. Мы привыкли к ним и совершенно не задумываемся о том, что любой электрический прибор создает вокруг себя электромагнитное поле. Оно невидимо, но влияет на любые живые организмы, в том числе и на человека.

Электромагнитное поле — особая форма материи, возникающая при взаимодействии движущихся частиц с электрическими зарядами. Электрическое и магнитное поле взаимосвязаны друг с другом и могут порождать одно другое — именно поэтому, как правило, о них говорят вместе как об одном, электромагнитном поле.

К основным источникам электромагнитных полей относят:

— линии электропередач;
— трансформаторные подстанции;
— электропроводку, телекоммуникации, кабели телевидения и интернета;
— вышки сотовой связи, радио- и телевышки, усилители, антенны сотовых и спутниковых телефонов, Wi-Fi роутеры;
— компьютеры, телевизоры, дисплеи;
— бытовые электроприборы;
— индукционные и микроволновые (СВЧ) печи;
— электротранспорт;
— радары.

Влияние электромагнитных полей на здоровье человека

Электромагнитные поля влияют на любые биологические организмы — на растения, насекомых, животных, людей. Ученые, изучающие влияние ЭМП на человека, пришли к выводу, что длительное и регулярное воздействие электромагнитных полей может привести к:
— повышенной утомляемости, нарушениям сна, головным болям, снижению давления, снижению частоты пульса;
— нарушениям в иммунной, нервной, эндокринной, половой, гормональной, сердечно-сосудистой системах;
— развитию онкологических заболеваний;
— развитию заболеваний центральной нервной системы;
— аллергическим реакциям.

Защита от ЭМП

Существуют санитарные нормы, устанавливающие максимально допустимые уровни напряженности электромагнитного поля в зависимости от времени нахождения в опасной зоне — для жилых помещений, рабочих мест, мест возле источников сильного поля. Если нет возможности уменьшить излучение конструкционно, например, от линии электромагнитных передач (ЭМП) или сотовой вышки, то разрабатываются служебные инструкции, средства защиты для работающего персонала, санитарно-карантинные зоны ограниченного доступа.

Различные инструкции регламентируют время пребывания человека в опасной зоне. Экранирующие сетки, пленки, остекление, костюмы из металлизированной ткани на основе полимерных волокон способны снизить интенсивность электромагнитного излучения в тысячи раз. По требованию ГОСТа зоны излучения ЭМП ограждаются и снабжаются предупреждающими табличками «Не входить, опасно!» и знаком опасности электромагнитного поля.

Специальные службы с помощью приборов постоянно контролируют уровень напряженности ЭМП на рабочих местах и в жилых помещениях. Можно и самостоятельно позаботиться о своем здоровье, купив портативный прибор «Импульс» или комплект «Импульс» + нитрат-тестер «SOEKS» .

Зачем нужны бытовые приборы измерения напряженности электромагнитного поля?

Электромагнитное поле негативно влияет на здоровье человека, поэтому полезно знать, какие места, в которых вы бываете (дома, в офисе, на приусадебном участке, в гараже) могут представлять опасность. Вы должны понимать, что повышенный электромагнитный фон могут создавать не только ваши электрические приборы, телефоны, телевизоры и компьютеры, но и неисправная проводка, электроприборы соседей, промышленные объекты, расположенные неподалеку.

Специалисты выяснили, что кратковременное воздействие ЭМП на человека практически безвредно, но длительное нахождение в зоне с повышенным электромагнитным фоном опасно. Вот такие зоны и можно обнаружить с помощью приборов типа «Импульс». Так, вы сможете проверить места, где проводите больше всего времени; детскую и свою спальню; рабочий кабинет. В прибор занесены значения, установленные нормативными документами, так что вы сразу сможете оценить степень опасности для вас и ваших близких. Возможно, что после обследования вы решите отодвинуть компьютер от кровати, избавиться от сотового телефона с усиленной антенной, поменять старую СВЧ-печь на новую, заменить изоляцию дверцы холодильника с режимом No Frost.

Подробности Категория: Электричество и магнетизм Опубликовано 05.06.2015 20:46 Просмотров: 11962

Переменные электрическое и магнитное поля при определённых условиях могут порождать друг друга. Они образуют электромагнитное поле, которое вовсе не является их совокупностью. Это единое целое, в котором эти два поля не могут существовать друг без друга.

Из истории

Опыт датского учёного Ханса Кристиана Эрстеда, проведенный в 1821 г., показал, что электрический ток порождает магнитное поле . В свою очередь, изменяющееся магнитное поле способно порождать электрический ток . Это доказал английский физик Майкл Фарадей , открывший в 1831 г. явление электромагнитной индукции. Он же является автором термина «электромагнитное поле».

В те времена в физике была принята концепция дальнодействия Ньютона . Считалось, что все тела действуют друг на друга через пустоту с бесконечно большой скоростью (практически мгновенно) и на любом расстоянии. Предполагалось, что и электрические заряды взаимодействуют подобным образом. Фарадей же считал, что пустоты в природе не существует, а взаимодействие происходит с конечной скоростью через некую материальную среду. Этой средой для электрических зарядов является электромагнитное поле . И оно распространяется со скоростью, равной скорости света .

Теория Максвелла

Объединив результаты предыдущих исследований, английский физик Джеймс Клерк Максвелл в 1864 г. создал теорию электромагнитного поля . Согласно ей, изменяющееся магнитное поле порождает изменяющееся электрическое поле, а переменное электрическое поле порождает переменное магнитное поле. Конечно, вначале одно из полей создаётся источником зарядов или токов. Но в дальнейшем эти поля уже могут существовать независимо от таких источников, вызывая появление друг друга. То есть, электрическое и магнитное поля являются составляющими единого электромагнитного поля . И всякое изменение одного из них вызывает появление другого. Эта гипотеза составляет основу теории Максвелла. Электрическое поле, порождаемое магнитным полем, является вихревым. Его силовые линии замкнуты.

Эта теория феноменологическая. Это означает, что она создана на основе предположений и наблюдений, и не рассматривает причину, вызывающую возникновение электрических и магнитных полей.

Свойства электромагнитного поля

Электромагнитное поле - это совокупность электрического и магнитного полей, поэтому в каждой точке своего пространства оно описывается двумя основными величинами: напряжённостью электрического поля Е и индукцией магнитного поля В .

Так как электромагнитное поле представляет собой процесс превращения электрического поля в магнитное, а затем магнитного в электрическое, то его состояние постоянно меняется. Распространяясь в пространстве и времени, оно образует электромагнитные волны. В зависимости от частоты и длины эти волны разделяют на радиоволны, терагерцовое излучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское и гамма-излучение .

Векторы напряжённости и индукции электромагнитного поля взаимно перпендикулярны, а плоскость в которой они лежат, перпендикулярна направлению распространения волны.

В теории дальнодействия скорость распространения электромагнитных волн считалась бесконечной большой. Однако Максвелл доказал, что это не так. В веществе электромагнитные волны распространяются с конечной скоростью, которая зависит от диэлектрической и магнитной проницаемости вещества. Поэтому Теорию Максвелла называют теорией близкодействия.

Экспериментально теорию Максвелла подтвердил в 1888 г. немецкий физик Генрих Рудольф Герц. Он доказал, что электромагнитные волны существуют. Более того, он измерил скорость распространения электромагнитных волн в вакууме, которая оказалась равной скорости света.

В интегральной форме этот закон выглядит так:

Закон Гаусса для магнитного поля

Поток магнитной индукции через замкнутую поверхность равен нулю .

Физический смысл этого закона в том, что в природе не существует магнитных зарядов. Полюса магнита разделить невозможно. Силовые линии магнитного поля замкнуты.

Закон индукции Фарадея

Изменение магнитной индукции вызывает появление вихревого электрического поля.

,

Теорема о циркуляции магнитного поля

В этой теореме описаны источники магнитного пόля , а также сами поля, создаваемые ими.

Электрический ток и изменение электрической индукции порождают вихревое магнитное поле .

,

,

Е – напряжённость электрического поля;

Н – напряжённость магнитного поля;

В – магнитная индукция. Это векторная величина, показывающая, с какой силой магнитное поле действует на заряд величиной q, движущийся со скоростью v;

D – электрическая индукция, или электрическое смещение. Представляет собой векторную величину, равную сумме вектора напряжённости и вектора поляризации. Поляризация вызывается смещением электрических зарядов под действием внешнего электрического поля относительно их положения, когда такое поле отсутствует.

Δ – оператор Набла. Действие этого оператора на конкретное поле называют ротором этого поля.

Δ х Е = rot E

ρ - плотность стороннего электрического заряда;

j - плотность тока - величина, показывающая силу тока, протекающего через единицу площади;

с – скорость света в вакууме.

Изучением электромагнитного поля занимается наука, называемая электродинамикой . Она рассматривает его взаимодействие с телами, имеющими электрический заряд. Такое взаимодействие называется электромагнитным . Классическая электродинамика описывает только непрерывные свойства электромагнитного поля с помощью уравнений Максвелла. Современная квантовая электродинамика считает, что электромагнитное поле обладает также и дискретными (прерывными) свойствами. И такое электромагнитное взаимодействие происходит с помощью неделимых частиц-квантов, не имеющих массы и заряда. Квант электромагнитного поля называют фотоном .

Электромагнитное поле вокруг нас

Электромагнитное поле образуется вокруг любого проводника с переменным током. Источниками электромагнитных полей являются линии электропередач, электродвигатели, трансформаторы, городской электрический транспорт, железнодорожный транспорт, электрическая и электронная бытовая техника – телевизоры, компьютеры, холодильники, утюги, пылесосы, радиотелефоны, мобильные телефоны, электробритвы - словом, всё, что связано с потреблением или передачей электроэнергии. Мощные источники электромагнитных полей – телевизионные передатчики, антенны станций сотовой телефонной связи, радиолокационные станции, СВЧ-печи и др. А так как таких устройств вокруг нас довольно много, то электромагнитные поля окружают нас повсюду. Эти поля воздействуют на окружающую среду и человека. Нельзя сказать, что это влияние всегда негативное. Электрические и магнитные поля существовали вокруг человека давно, но мощность их излучения ещё несколько десятилетий назад был в сотни раз ниже нынешнего.

До определённого уровня электромагнитное излучение может быть безопасным для человека. Так, в медицине с помощью электромагнитного излучения низкой интенсивности заживляют ткани, устраняют воспалительные процессы, оказывают обезболивающее действие. Аппараты УВЧ снимают спазмы гладкой мускулатуры кишечника и желудка, улучшают обменные процессы в клетках организма, снижая тонус капилляров, понижают артериальное давление.

Но сильные электромагнитные поля вызывают сбои в работе сердечно-сосудистой, имунной, эндокринной и нервной систем человека, могут вызывать бессонницу, головные боли, стрессы. Опасность в том, что их воздействие практически незаметно для человека, а нарушения возникают постепенно.

Каким образом защититься от окружающего нас электромагнитного излучения? Полностью это сделать невозможно, поэтому нужно постараться свести к минимуму его воздействие. Прежде всего нужно расположить бытовые приборы таким образом, чтобы они находились подальше от тех мест, где мы находимся чаще всего. Например, не нужно садиться слишком близко к телевизору. Ведь чем дальше расстояние от источника электромагнитного поля, тем слабее оно становится. Очень часто мы оставляем прибор, включенным в розетку. Но электромагнитное поле исчезает, лишь когда прибор отключается от электрической сети.

Влияют на здоровье человека и естественные электромагнитные поля – космическое излучение, магнитное поле Земли.

Электромагнитное поле это такой вид материи, которая возникает вокруг движущихся зарядов. Например, вокруг проводника с током. Электромагнитное поле состоит из двух составляющих это электрическое и магнитное поле. Независимо друг от друга они существовать не могут. Одно порождает другое. При изменении электрического поля тут же возникает магнитное. Скорость распространения электромагнитной волны V=C/EM где e и м соответственно магнитная и диэлектрическая проницаемость среды, в которой распространяется волна. Электромагнитная волна в вакууме распространяется со скоростью света, то есть 300 000 км/с. Поскольку диэлектрическая и магнитная проницаемость вакуума считается равными 1. При изменении электрического поля возникает магнитное поле. Так как вызвавшее его электрическое поле не является неизменным (то есть изменяется во времени) то и магнитное поле также будет переменным. Изменяющееся магнитное поле в свою очередь порождает электрическое поле и так далее. Таким образом, для последующего поля (неважно будет оно электрическое или магнитное) источником будет служить предыдущее поле, а не первоначальный источник, то есть проводник с током. Таким образом, даже после отключения тока в проводнике электромагнитное поле будет продолжать существовать и распространятся в пространстве. Электромагнитная волна распространяется в пространстве во все стороны от своего источника. Можно себе представить включению лампочку, лучи света от нее распространяются во все стороны. Электромагнитная волна при распространении переносит энергию в пространстве. Чем сильнее ток в проводнике вызвавший поле, тем больше энергия переносимая волной. Также энергия зависит от частоты излучаемых волн, при увеличении ее в 2,3,4 раза энергия волны увеличится в 4,9,16 раз соответственно. То есть энергия распространения волны пропорциональна квадрату частоты. Наилучшие условия распространения волн создаются, когда длинна проводника, равна длине волны. Силовые линии магнитного и электрического полетим взаимно перпендикулярно. Магнитные силовые линии охватывают проводник с током и всегда замкнуты. Электрические силовые линии идут от одного заряда к другому. Электромагнитная волна это всегда поперечная волна. То есть силовые линии как магнитные, так и электрические лежат в перпендикулярной плоскости к направлению распространения. Напряжённость электромагнитного поля силовая характеристика поля. Также напряженность, векторная величина то есть у нее есть начало и направление. Напряжённость поля направлена по касательной к силовым линиям. Поскольку напряжённость электрического и магнитного поля перпендикулярны между собой, то есть правило, по которому можно определить направление распространения волны. При вращении винта по кратчайшему пути от вектора напряжённости электрического поля к вектору напряжённости магнитного поля поступательное движение винта укажет направление распространения волны.

Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуетсямагнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34).Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36)

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»