Упрощение логических выражений. Записи с меткой "упростить алгебраическое выражение"

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Зачастую в задачах требуется привести упрощенный ответ. Хотя и упрощенный, и неупрощенный ответы являются верными, преподаватель может снизить вашу оценку, если вы не упростите ответ. Более того, с упрощенным математическим выражением гораздо легче работать. Поэтому очень важно научиться упрощать выражения.

Шаги

Правильный порядок выполнения математических операций

  1. Запомните правильный порядок выполнения математических операций. При упрощении математического выражения необходимо соблюдать определенный порядок действий, так как некоторые математические операции имеют приоритет над другими и должны быть сделаны в первую очередь (на самом деле несоблюдение правильного порядка выполнения операций приведет вас к неправильному результату). Запомните следующий порядок выполнения математических операций: выражение в скобках, возведение в степень, умножение, деление, сложение, вычитание.

    • Обратите внимание, что знание правильного порядка выполнения операций позволит вам упростить большинство простейших выражений, но для упрощения многочлена (выражения с переменной) необходимо знать специальные приемы (смотрите следующий раздел).
  2. Начните с решения выражения в скобках. В математике скобки указывают на то, что заключенное в них выражение должно быть выполнено в первую очередь. Поэтому при упрощении любого математического выражения начинайте с решения выражения, заключенного в скобки (при этом неважно, какие операции нужно выполнить внутри скобок). Но помните, что работая с выражением, заключенным в скобки, следует соблюдать порядок проведения операций, то есть члены в скобках сначала перемножаются, делятся, складываются, вычитаются и так далее.

    • Например, упростим выражение 2x + 4(5 + 2) + 3 2 - (3 + 4/2) . Здесь начнем с выражений в скобках: 5 + 2 = 7 и 3 + 4/2 = 3 + 2 =5.
      • Выражение во второй паре скобок упрощается до 5, потому что сначала нужно разделить 4/2 (согласно правильному порядку выполнения операций). Если не соблюдать этот порядок, то вы получите неправильный ответ: 3 + 4 = 7 и 7 ÷ 2 = 7/2.
    • Если в скобках есть еще одна пара скобок, начните упрощение с решения выражения во внутренних скобках, а затем переходите к решению выражения во внешних скобках.
  3. Возведите в степень. Решив выражения в скобках, перейдите к возведению в степень (помните, что у степени есть показатель степени и основание степени). Возведите соответствующее выражение (или число) в степень и подставьте результат в данное вам выражение.

    • В нашем примере единственным выражением (числом) в степени является 3 2: 3 2 = 9. В данном вам выражении вместо 3 2 подставьте 9 и вы получите: 2x + 4(7) + 9 - 5.
  4. Умножьте. Помните, что операция умножения может обозначаться следующими символами: «х», «∙» или «*». Но если между числом и переменной (например, 2х) или между числом и числом в скобках (например, 4(7)) нет никаких символов, то это также является операцией умножения.

    • В нашем примере присутствуют две операции умножения: 2x (два умножить на переменную «х») и 4(7) (четыре умножить на семь). Мы не знаем значения х, поэтому выражение 2х оставим как есть. 4(7) = 4 х 7 = 28. Теперь вы можете переписать данное вам выражение так: 2x + 28 + 9 - 5.
  5. Разделите. Помните, что операция деления может обозначаться следующими символами: «/», «÷» или «–» (последний символ вы можете встретить в дробях). Например 3/4 – это три, деленное на четыре.

    • В нашем примере операции деления больше нет, так как вы уже разделили 4 на 2 (4/2) при решении выражения в скобках. Поэтому вы можете перейти к следующему шагу. Помните, что в большинстве выражений нет сразу всех математических операций (только некоторые из них).
  6. Сложите. При сложении членов выражения вы можете начать с самого крайнего (слева) члена, или можете сначала сложить те члены выражения, которые легко складываются. Например, в выражении 49 + 29 + 51 +71 сначала легче сложить 49 + 51 = 100, потом 29 + 71 = 100 и, наконец, 100 + 100 = 200. Гораздо сложнее складывать так: 49 + 29 = 78; 78 + 51 = 129; 129 + 71 = 200.

    • В нашем примере 2x + 28 + 9 + 5 присутствуют две операции сложения. Начнем с самого крайнего (слева) члена: 2x + 28; вы не можете сложить 2х и 28, потому что не знаете значения переменной «х». Поэтому сложите 28 + 9 = 37. Теперь выражение можно переписать так: 2х + 37 - 5.
  7. Вычтите. Это последняя операция в правильном порядке выполнения математических операций. На этом этапе вы также можете прибавлять отрицательные числа или же делать это на этапе сложения членов – это никак не отразится на конечном результате.

    • В нашем примере 2х + 37 - 5 присутствует только одна операция вычитания: 37 - 5 = 32.
  8. На этом этапе, проделав все математические операции, вы должны получить упрощенное выражение. Но если данное вам выражение содержит одну или несколько переменных, то помните, что член с переменной останется таким, как есть. Решение (а не упрощение) выражения с переменной подразумевает нахождение значения этой переменной. Иногда выражения с переменной можно упростить, используя специальные методы (смотрите следующий раздел).

    • В нашем примере окончательный ответ: 2х + 32. Вы не сможете сложить два члена, пока не узнаете значение переменной «х». Узнав значение переменной, вы с легкостью упростите этот двучлен.

    Упрощение сложных выражений

    1. Сложение подобных членов. Помните, что вычитать и складывать можно исключительно подобные члены, то есть члены с одинаковой переменной и одинаковым показателем степени. Например, можно сложить 7x и 5x, но нельзя складывать 7x и 5x 2 (так как здесь показатели степени разные).

      • Это правило распространяется и на члены с несколькими переменными. Например, можно сложить 2xy 2 и -3xy 2 , но нельзя складывать 2xy 2 и -3x 2 y или 2xy 2 и -3y 2 .
      • Рассмотрим пример: x 2 + 3x + 6 - 8x. Здесь подобными членами являются 3x и 8x, поэтому их можно сложить. Упрощенное выражение выглядит так: x 2 - 5x + 6.
    2. Упростите числовую дробь. В такой дроби и в числителе, и в знаменателе находятся числа (без переменной). Числовая дробь упрощается несколькими способами. Во-первых, просто разделите знаменатель на числитель. Во-вторых, разложите числитель и знаменатель на множители и сократите одинаковые множители (так как при делении числа на само себя вы получите 1). Другими словами, если и у числителя, и у знаменателя есть один и тот же множитель, его можно отбросить и получить упрощенную дробь.

      • Например, рассмотрим дробь 36/60. При помощи калькулятора разделите 36 на 60 и получите 0,6. Но вы можете упростить эту дробь и по-другому, разложив числитель и знаменатель на множители: 36/60 = (6х6)/(6х10) = (6/6)*(6/10). Так как 6/6 = 1, то упрощенная дробь: 1 х 6/10 = 6/10. Но эту дробь также можно упростить: 6/10 = (2х3)/(2*5) = (2/2)*(3/5) = 3/5.
    3. Если дробь содержит переменную, можно сократить одинаковые множители с переменной. Разложите и числитель, и знаменатель на множители и сократите одинаковые множители, даже если они содержат переменную (помните, что здесь одинаковые множители могут содержать или не содержать переменную).

      • Рассмотрим пример: (3x 2 + 3x)/(-3x 2 + 15x). Это выражение можно переписать (разложить на множители) в виде: (x + 1)(3x)/(3x)(5 - x). Так как член 3x находится и в числителе, и в знаменателе, его можно сократить, и вы получите упрощенное выражение: (х + 1)/(5 - х). Рассмотрим другой пример: (2x 2 + 4x + 6)/2 = (2(x 2 + 2x + 3))/2 = x 2 + 2x + 3.
      • Обратите внимание, что вы не можете сокращать любые члены – сокращаются только одинаковые множители, которые присутствуют как в числителе, так и в знаменателе. Например, в выражении (х(х + 2))/х переменная (множитель) «х» находится и в числителе, и в знаменателе, поэтому «х» можно сократить и получить упрощенное выражение: (х + 2)/1 = х + 2. Тем не менее, в выражении (х + 2)/х переменную «х» сокращать нельзя (так как в числителе «х» не является множителем).
    4. Раскройте скобки. Для этого умножьте член, стоящий за скобкой, на каждый член в скобках. Иногда это помогает упростить сложное выражение. Это относится как к членам, которые являются простыми числами, так и к членам, которые содержат переменную.

      • Например, 3(x 2 + 8) = 3x 2 + 24, а 3x(x 2 + 8) = 3x 3 + 24x.
      • Обратите внимание, что в дробных выражениях скобки раскрывать не нужно, если и в числителе, и в знаменателе присутствует одинаковый множитель. Например, в выражении (3(x 2 + 8))/3x скобки раскрывать не нужно, так как здесь можно сократить множитель 3 и получить упрощенное выражение (x 2 + 8)/x. С этим выражением легче работать; если бы вы раскрыли скобки, то получили бы следующее сложное выражение: (3x 3 + 24x)/3x.
    5. Разложите на множители многочлены. При помощи этого метода можно упростить некоторые выражения и многочлены. Разложение на множители – это операция, противоположная раскрытию скобок, то есть выражение записывается в виде произведения двух выражений, каждое из которых заключено в скобки. В некоторых случаях разложение на множители позволяет сократить одинаковое выражение. В особых случаях (как правило, с квадратными уравнениями) разложение на множители позволит вам решить уравнение.

      • Рассмотрим выражение x 2 - 5x + 6. Оно раскладывается на множители: (x - 3)(x - 2). Таким образом, если, например, дано выражение (x 2 - 5x + 6)/(2(x - 2)), то вы можете переписать его в виде (x - 3)(x - 2)/(2(x - 2)), сократить выражение (х - 2) и получить упрощенное выражение (х - 3)/2.
      • Разложение многочленов на множители применяется для решения (нахождения корней) уравнений (уравнение – это многочлен, приравненный к 0). Например, рассмотрим уравнение x 2 - 5x + 6 = 0. Разложив его на множители, вы получите (х - 3)(х - 2) = 0. Так как любое выражение, умноженное на 0, равно 0, то мы можем записать так: х - 3 = 0 и х - 2 = 0. Таким образом, х = 3 и х = 2, то есть вы нашли два корня данного вам уравнения.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

Шаги

Важные определения

  1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

    • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
  2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

    • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
    • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
    • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
  3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

    • Скобки
    • Степень
    • Умножение
    • Деление
    • Сложение
    • Вычитание

    Приведение подобных членов

    1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

      • Например, упростите выражение 1 + 2x - 3 + 4x .
    2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

      • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
    3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

      • 2x + 4x =
      • 1 - 3 = -2
    4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

      • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
    5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

      • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
        • 5(3x-1) + x((2x)/(2)) + 8 - 3x
        • 15x - 5 + x(x) + 8 - 3x
        • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
        • x 2 + (15x - 3x) + (8 - 5)
        • x 2 + 12x + 3

    Вынесение множителя за скобки

    1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

      • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
    2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

      • В нашем примере разделите каждый член выражения на 3.
        • 9x 2 /3 = 3x 2
        • 27x/3 = 9x
        • -3/3 = -1
        • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
    3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

      • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
    4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

      • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
        • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
        • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
        • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

    Дополнительные методы упрощения

  4. Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
    • √(90)
    • √(9×10)
    • √(9)×√(10)
    • 3×√(10)
    • 3√(10)
  5. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

    • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
      • 6x 3 × 8x 4 + (x 17 /x 15)
      • (6 × 8)x 3 + 4 + (x 17 - 15)
      • 48x 7 + x 2
    • Далее приведено объяснение правила умножения и деления членов со степенью.
      • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
      • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .
  • Всегда помните о знаках (плюс или минус), стоящих перед членами выражения, так как многие испытывают затруднения с выбором правильного знака.
  • Попросите о помощи, если это необходимо!
  • Упрощать алгебраические выражения нелегко, но если вы набьете руку, вы сможете использовать этот навык всю жизнь.

Замечание 1

Логическую функцию можно записать с помощью логического выражения, а затем можно перейти к логической схеме. Упрощать логические выражения надо для того, чтобы получить как можно более простую (а значит, и более дешёвую) логическую схему. По сути, логическая функция, логическое выражение и логическая схема −это три разных языка, рассказывающие об одной сущности.

Для упрощения логических выражений используют законы алгебры логики .

Какие-то преобразования похожи на преобразования формул в классической алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), а другие преобразования основаны на свойствах, которыми операции классической алгебры не обладают (использование распределительного закона для конъюнкции, законов поглощения, склеивания, правил де Моргана и др.).

Законы алгебры логики формулируются для базовых логических операций - “НЕ” – инверсия (отрицание), “И” – конъюнкция (логическое умножение) и “ИЛИ” – дизъюнкция (логическое сложение).

Закон двойного отрицания означает, что операция “НЕ” обратима: если применить ее дважды, то в итоге логическое значение не изменится.

Закон исключенного третьего гласит, что любое логическое выражение либо истинно, либо ложно (“третьего не дано”). Поэтому если $A=1$, то $\bar{A}=0$ (и наоборот), а, значит, конъюнкция этих величин всегда равно нулю, а дизъюнкция равна единице.

$((A + B) → C) \cdot (B → C \cdot D) \cdot C.$

Упростим эту формулу:

Рисунок 3.

Отсюда следует, что $A = 0$, $B = 1$, $C = 1$, $D = 1$.

Ответ: в шахматы играют ученики $B$, $C$ и $D$, а ученик $A$ не играет.

При упрощении логических выражений можно выполнять такую последовательность действий :

  1. Заменить все “небазовые” операции (эквивалентность, импликацию, исключающее ИЛИ и др.) на их выражения через базовые операции инверсию, конъюнкцию и дизъюнкцию.
  2. Раскрыть инверсии сложных выражений по правилам де Моргана таким образом, чтобы операции отрицания остались только у отдельных переменных.
  3. Затем упростить выражение, используя раскрытие скобок, вынесение общих множителей за скобки и другие законы алгебры логики.

Пример 2

Здесь последовательно использованы правило де Моргана, распределительный закон, закон исключенного третьего, переместительный закон, закон повторения, вновь переместительный закон и закон поглощения.

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8) -3,5 · · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b ; дробь 11) сократим на а и дробь 12) сократим на 7n . Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Страница 1 из 1 1

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»