Первообразная и неопределенный интеграл — Гипермаркет знаний. Лекция "Первообразная

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Первообразная.

Первообразную легко понять на примере.

Возьмем функцию у = х 3 . Как мы знаем из предыдущих разделов, производной от х 3 является 3х 2:

(х 3)" = 3х 2 .

Следовательно, из функции у = х 3 мы получаем новую функцию: у = 3х 2 .
Образно говоря, функция у = х 3 произвела функцию у = 3х 2 и является ее «родителем». В математике нет слова «родитель», а есть родственное ему понятие: первообразная.

То есть: функция у = х 3 является первообразной для функции у = 3х 2 .

Определение первообразной:

В нашем примере (х 3)" = 3х 2 , следовательно у = х 3 – первообразная для у = 3х 2 .

Интегрирование.

Как вы знаете, процесс нахождения производной по заданной функции называется дифференцированием. А обратная операция называется интегрированием.

Пример-пояснение :

у = 3х 2 + sin x .

Решение :

Мы знаем, что первообразной для 3х 2 является х 3 .

Первообразной для sin x является –cos x .

Складываем два первообразных и получаем первообразную для заданной функции:

у = х 3 + (–cos x ),

у = х 3 – cos x .

Ответ :
для функции у = 3х 2 + sin x у = х 3 – cos x .

Пример-пояснение :

Найдем первообразную для функции у = 2 sin x .

Решение :

Замечаем, что k = 2. Первообразной для sin x является –cos x .

Следовательно, для функции у = 2 sin x первообразной является функция у = –2 cos x .
Коэффициент 2 в функции у = 2 sin x соответствует коэффициенту первообразной, от которой эта функция образовалась.

Пример-пояснение :

Найдем первообразную для функции y = sin 2x .

Решение :

Замечаем, что k = 2. Первообразной для sin x является –cos x .

Применяем нашу формулу при нахождении первообразной для функции y = cos 2x :

1
y = - · (–cos 2x ),
2

cos 2x
y = – ----
2

cos 2x
Ответ : для функции y = sin 2x первообразной является функция y = – ----
2


(4)

Пример-пояснение .

Возьмем функцию из предыдущего примера: y = sin 2x .

Для этой функции все первообразные имеют вид:

cos 2x
y = – ---- + C .
2

Пояснение .

Возьмем первую строчку. Читается она так: если функция y = f(x )равна 0, то первообразной для для нее является 1. Почему? Потому что производная единицы равна нулю: 1" = 0.

В таком же порядке читаются и остальные строчки.

Как выписывать данные из таблицы? Возьмем восьмую строчку:

(-cos x )" = sin x

Пишем вторую часть со знаком производной, затем знак равенства и производную.

Читаем: первообразной для функции sin x является функция -cos x .

Или: функция -cos x является первообразной для функции sin x .

Документ

Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...

  • Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

    Изучаем понятие "интеграл"

    Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Именно эти фундаментальные сведения о Вы найдете у нас в блоге.

    Неопределенный интеграл

    Пусть у нас есть какая-то функция f(x) .

    Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

    Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.

    Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

    Простой пример:

    Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:

    Определенный интеграл

    Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

    В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?

    С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


    Точки а и b называются пределами интегрирования.

    Бари Алибасов и группа "Интеграл"

    Кстати! Для наших читателей сейчас действует скидка 10% на

    Правила вычисления интегралов для чайников

    Свойства неопределенного интеграла

    Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

    • Производная от интеграла равна подынтегральной функции:

    • Константу можно выносить из-под знака интеграла:

    • Интеграл от суммы равен сумме интегралов. Верно также для разности:

    Свойства определенного интеграла

    • Линейность:

    • Знак интеграла изменяется, если поменять местами пределы интегрирования:

    • При любых точках a , b и с :

    Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

    Примеры решения интегралов

    Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем Вам самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

    Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Спросите , и они расскажут вам о вычислении интегралов все, что знают сами. С нашей помощью любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

    Рассмотрим движение точки вдоль прямой. Пусть за время t от начала движения точка прошла путь s(t). Тогда мгновенная скорость v(t) равна производной функции s(t), то есть v(t) = s"(t).

    В практике встречается обратная задача: по заданной скорости движения точки v(t) найти пройденный ею путь s(t) , то есть найти такую функцию s(t), производная которой равна v(t) . Функцию s(t), такую, что s"(t) = v(t) , называют первообразной функции v(t).

    Например, если v(t) = аt , где а – заданное число, то функция
    s(t) = (аt 2) / 2 v(t), так как
    s"(t) = ((аt 2) / 2) " = аt = v(t).

    Функция F(x) называется первообразной функции f(x) на некотором промежутке, если для всех х из этого промежутка F"(x) = f(x).

    Например, функция F(x) = sin x является первообразной функции f(x) = cos x, так как (sin x)" = cos x ; функция F(x) = х 4 /4 является первообразной функции f(x) = х 3 , так как (х 4 /4)" = х 3 .

    Рассмотрим задачу.

    Задача .

    Доказать, что функции х 3 /3, х 3 /3 + 1, х 3 /3 – 4 являются первообразной одной и той же функции f(x) = х 2 .

    Решение .

    1) Обозначим F 1 (x) = х 3 /3, тогда F" 1 (x) = 3 ∙ (х 2 /3) = х 2 = f(x).

    2) F 2 (x) = х 3 /3 + 1, F" 2 (x) = (х 3 /3 + 1)" = (х 3 /3)" + (1)"= х 2 = f(x).

    3) F 3 (x) = х 3 /3 – 4, F" 3 (x) = (х 3 /3 – 4)" = х 2 = f(x).

    Вообще любая функция х 3 /3 + С, где С – постоянная, является первообразной функции х 2 . Это следует из того, что производная постоянной равна нулю. Этот пример показывает, что для заданной функции ее первообразная определяется неоднозначно.

    Пусть F 1 (x) и F 2 (x) – две первообразные одной и той же функции f(x).

    Тогда F 1 "(x) = f(x) и F" 2 (x) = f(x).

    Производная их разности g(х) = F 1 (x) – F 2 (x) равна нулю, так как g"(х) = F" 1 (x) – F" 2 (x) = f(x) – f(x) = 0.

    Если g"(х) = 0 на некотором промежутке, то касательная к графику функции у = g(х) в каждой точке этого промежутка параллельна оси Ох. Поэтому графиком функции у = g(х) является прямая, параллельная оси Ох, т.е. g(х) = С, где С – некоторая постоянная. Из равенств g(х) = С, g(х) = F 1 (x) – F 2 (x) следует, что F 1 (x) = F 2 (x) + С.

    Итак, если функция F(x) является первообразной функции f(x) на некотором промежутке, то все первообразные функции f(x) записываются в виде F(x) + С, где С – произвольная постоянная.

    Рассмотрим графики всех первообразных заданной функции f(x). Если F(x) – одна из первообразных функции f(x), то любая первообразная этой функции получается прибавлением к F(x) некоторой постоянной: F(x) + С. Графики функций у = F(x) + С получаются из графика у = F(x) сдвигом вдоль оси Оу. Выбором С можно добиться того, чтобы график первообразной проходил через заданную точку.

    Обратим внимание на правила нахождения первообразных.

    Вспомним, что операцию нахождения производной для заданной функции называют дифференцированием . Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова «восстанавливать» ).

    Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что (cos x)" = -sin x, получаем (-cos x)" = sin x , откуда следует, что все первообразные функции sin x записываются в виде -cos x + С , где С – постоянная.

    Рассмотрим некоторые значения первообразных.

    1) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

    2) Функция: 1/х, х > 0. Первообразная: ln x + С.

    3) Функция: х р, р ≠ -1 . Первообразная: (х р+1) / (р+1) + С.

    4) Функция: е х . Первообразная: е х + С.

    5) Функция: sin x . Первообразная: -cos x + С.

    6) Функция: (kx + b) p , р ≠ -1, k ≠ 0. Первообразная: (((kx + b) p+1) / k(p+1)) + С.

    7) Функция: 1/(kx + b), k ≠ 0 . Первообразная: (1/k) ln (kx + b)+ С.

    8) Функция: е kx + b , k ≠ 0 . Первообразная: (1/k) е kx + b + С.

    9) Функция: sin (kx + b), k ≠ 0 . Первообразная: (-1/k) cos (kx + b) .

    10) Функция: cos (kx + b), k ≠ 0. Первообразная: (1/k) sin (kx + b).

    Правила интегрирования можно получить с помощью правил дифференцирования . Рассмотрим некоторые правила.

    Пусть F(x) и G(x) – первообразные соответственно функций f(x) и g(x) на некотором промежутке. Тогда:

    1) функция F(x) ± G(x) является первообразной функции f(x) ± g(x);

    2) функция аF(x) является первообразной функции аf(x).

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


    Определение первообразной.

    Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любого х из заданного промежутка.

    Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.


    Определение неопределенного интеграла.

    Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

    Выражение называют подынтегральным выражением , а f(x) – подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

    Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

    На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

    Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

    Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

    Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.


    Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

    • первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;
    • второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

    Рассмотрим пример.

    Пример.

    Найти первообразную функции , значение которой равно единице при х = 1 .

    Решение.

    Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1 . Искомая первообразная примет вид .

    Пример.

    Найти неопределенный интеграл и результат проверить дифференцированием.

    Решение.

    По формуле синуса двойного угла из тригонометрии , поэтому

    ← Вернуться

    ×
    Вступай в сообщество «parkvak.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «parkvak.ru»