Физические опыты для детей в домашних условиях. Красивейшие физические эксперименты всех времен

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

1. Цилиндры со стругом.

Притяжение между молекулами становится заметным только тогда, когда они находятся очень близко друг к другу, на расстояниях, сравнимых с размером самих молекул. Два свинцовых цилиндра сцепляются вместе, если их вплотную прижать друг к другу ровными, только что срезанными поверхностями. При этом сцепление может быть настолько прочным, что цилиндры не удаётся оторвать друг от друга даже при большой нагрузке.

2. Определение архимедовой силы.

1. К пружине подвешивают небольшое ведёрко и тело цилиндрической формы. Растяжение пружины по положению стрелки отмечают меткой на штативе. Она показывает вес тела в воздухе.

2. Приподняв тело, под него подставляют отливной сосуд, наполненный водой до уровня отливной трубки. После чего тело погружают целиком в воду. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в воде. В данном случае на тело, наряду с силой тяжести, действует ещё и сила, выталкивающая его из жидкости.

3. Если в ведёрко перелить воду из стакана (т.е. ту, которую вытеснило тело),то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что, сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела.

3. Поднесём дугообразный магнит к листу картона. Магнит не притянет его. Затем положим картон на мелкие железные предметы и снова поднесём магнит. Лист картона поднимется, а за ним и мелкие железные предметы. Это происходит потому, что между магнитом и мелкими железными предметами образуется магнитное поле, которое действует и на картон, под действием этого поля картон притягивается к магниту.

4. Положим дугообразный магнит на край стола. Тонкую иглу с ниткой положим на один из полюсов магнита. Затем осторожно потянем иглу за нить, пока игла не соскочит с полюса магнита. Игла зависает в воздухе. Это происходит потому, что находясь в магнитном поле, иголка намагничивается и притягивается к магниту.

5. Действие магнитного поля на катушку с током.

Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.

У нас имеется катушка, подвешенная на гибких проводах, которые присоединены к источнику тока. Катушка помещена между полюсами дугообразного магнита, т.е. находится в магнитном поле. Взаимодействие между ними не наблюдается. При замыкании электрической цепи катушка приходит в движение. Направление движения катушки зависит от направления тока в ней и от расположения полюсов магнита. В данном случае ток направлен по часовой стрелке и катушка притянулась. При изменении направления тока на противоположное катушка оттолкнётся.

Точно так же катушка изменит направление движения при изменении расположения полюсов магнита (т.е. изменения направления линий магнитного поля).

Если убрать магнит, то при замыкании цепи катушка двигаться не будет.

Значит, со стороны магнитного поля на катушку с током действует некоторая сила, отклоняющая его от первоначального положения.

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

6. Прибор для демонстрации правила Ленца.

Выясним, как направлен индукционный ток. Для этого воспользуемся прибором, который представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Возьмём дугообразный магнит и внесём его в кольцо с разрезом - кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом, а южным.

Объясним наблюдаемое явление.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны. Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему. Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону. Следовательно, магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

На основании результатов рассмотренных опытов было сформулировано правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

7. Шар с кольцом.

О том, что все тела состоят из мельчайших частиц между которыми есть промежутки, позволяет судить следующий опыт по изменению объёма шара при нагревании и охлаждении.

Возьмём стальной шарик, который в ненагретом состоянии проходит сквозь кольцо. Если шарик нагреть, то, расширившись, он уже сквозь кольцо не пройдёт. Через некоторое время шарик, остыв, уменьшится в объёме, а кольцо, нагревшись от шарика, расширится, и шарик вновь пройдёт сквозь кольцо. Это происходит потому, что все вещества состоят из отдельных частичек, между которыми есть промежутки. Если частицы удаляются друг от друга, то объём тела увеличивается. Если частицы сближаются, объём тела уменьшается.

8. Давление света.

На лёгкие крылышки, находящиеся в сосуде, из которого откачан воздух, направляют свет. Крылышки приходят в движение. Причина светового давления заключается в том, что фотоны обладают импульсом. При поглощении их крылышками они передают им свой импульс. Согласно закону сохранения импульса импульс крылышек становится равным импульсу поглощённых фотонов. Поэтому покоящиеся крылышки приходят в движение. Изменение импульса крылышек означает согласно второму закону Ньютона, что на крылышки действует сила.

9. Источники звука. Звуковые колебания.

Источниками звука являются колеблющиеся тела. Но не всякое колеблющееся тело является источником звука. Не издаёт звука колеблющейся шарик, подвешенный на нити, т.к его колебания происходят с частотой меньше 16 Гц. Если по камертону ударить молоточком, то камертон зазвучит. Значит его колебания лежат в звуковом диапазоне частот от 16 Гц до 20 кГц. Поднесём к звучащему камертону шарик, подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей.

10. Электрофорная машина.

Электрофорная машина является источником тока, в котором механическая энергия превращается в электрическую.

11. Прибор для демонстрации инерции.

Прибор позволяет учащимся усвоить понятие импульса силы и показать его зависимость от действующей силы и времени её действия.

На торец стойки с лункой положим пластинку, а на пластинку - шарик. Медленно сдвинем пластинку с шариком с торца стойки и увидим одновременное движение шарика и пластинки, т.е. шарик по отношению к пластинке неподвижен. Значит результат взаимодействия шарика и пластинки зависит от времени взаимодействия.

На торец стойки с лункой положим пластинку так, чтобы её торец коснулся плоской пружины. На пластинку положим шарик на место соприкосновения пластинки с торцом стойки. Придерживая левой рукой площадку, слегка оттянем пружину от пластинки и отпустим её. Пластинка вылетает из под шарика, а шарик остаётся на месте в лунке стойки. Значит результат взаимодействия тел зависит не только от времени, но и от силы взаимодействия.

Также этот опыт служит косвенным доказательством 1 закона Ньютона - закона инерции. Пластинка после вылета далее движется по инерции. А шарик сохраняет состояние покоя, при отсутствии внешнего воздействия на него.

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Есть очень простые опыты, которые дети запоминают на всю жизнь. Ребята могут не понять до конца, почему это все происходит, но, когда пройдет время и они окажутся на уроке по физике или химии, в памяти обязательно всплывет вполне наглядный пример.

сайт собрал 7 интересных экспериментов, которые запомнятся детям. Все, что нужно для этих опытов, - у вас под рукой.

Огнеупорный шарик

Понадобится : 2 шарика, свечка, спички, вода.

Опыт : Надуйте шарик и подержите его над зажженной свечкой, чтобы продемонстрировать детям, что от огня шарик лопнет. Затем во второй шарик налейте простой воды из-под крана, завяжите и снова поднесите к свечке. Окажется, что с водой шарик спокойно выдерживает пламя свечи.

Объяснение : Вода, находящаяся в шарике, поглощает тепло, выделяемое свечой. Поэтому сам шарик гореть не будет и, следовательно, не лопнет.

Карандаши

Понадобится: полиэтиленовый пакет, простые карандаши, вода.

Опыт: Наливаем воду в полиэтиленовый пакет наполовину. Карандашом протыкаем пакет насквозь в том месте, где он заполнен водой.

Объяснение: Если полиэтиленовый пакет проткнуть и потом залить в него воду, она будет выливаться через отверстия. Но если пакет сначала наполнить водой наполовину и затем проткнуть его острым предметом так, что бы предмет остался воткнутым в пакет, то вода вытекать через эти отверстия почти не будет. Это связано с тем, что при разрыве полиэтилена его молекулы притягиваются ближе друг к другу. В нашем случае, полиэтилен затягивается вокруг карандашей.

Нелопающийся шарик

Понадобится: воздушный шар, деревянная шпажка и немного жидкости для мытья посуды.

Опыт: Смажьте верхушку и нижнюю часть средством и проткните шар, начиная снизу.

Объяснение: Секрет этого трюка прост. Для того, чтобы сохранить шарик, нужно проткнуть его в точках наименьшего натяжения, а они расположены в нижней и в верхней части шарика.

Цветная капуста

Понадобится : 4 стакана с водой, пищевые красители, листья капусты или белые цветы.

Опыт : Добавьте в каждый стакан пищевой краситель любого цвета и поставьте в воду по одному листу или цветку. Оставьте их на ночь. Утром вы увидите, что они окрасились в разные цвета.

Объяснение : Растения всасывают воду и за счет этого питают свои цветы и листья. Получается это благодаря капиллярному эффекту, при котором вода сама стремится заполнить тоненькие трубочки внутри растений. Так питаются и цветы, и трава, и большие деревья. Всасывая подкрашенную воду, они меняют свой цвет.

Плавающее яйцо

Понадобится : 2 яйца, 2 стакана с водой, соль.

Опыт : Аккуратно поместите яйцо в стакан с простой чистой водой. Как и ожидалось, оно опустится на дно (если нет, возможно, яйцо протухло и не стоит возвращать его в холодильник). Во второй стакан налейте теплой воды и размешайте в ней 4-5 столовых ложек соли. Для чистоты эксперимента можно подождать, пока вода остынет. Потом опустите в воду второе яйцо. Оно будет плавать у поверхности.

Объяснение : Тут все дело в плотности. Средняя плотность яйца гораздо больше, чем у простой воды, поэтому яйцо опускается вниз. А плотность соляного раствора выше, и поэтому яйцо поднимается вверх.

Кристаллические леденцы

Понадобится : 2 стакана воды, 5 стаканов сахара, деревянные палочки для мини-шашлычков, плотная бумага, прозрачные стаканы, кастрюля, пищевые красители.

Опыт : В четверти стакана воды сварите сахарный сироп с парой столовых ложек сахара. Высыпьте немного сахара на бумагу. Затем нужно обмакнуть палочку в сироп и собрать ею сахаринки. Далее распределите их равномерно на палочке.

Оставьте палочки на ночь сушиться. Утром в 2 стаканах воды на огне растворите 5 стаканов сахара. Минут на 15 можно оставить сироп остывать, но сильно остыть он не должен, иначе кристаллы не будут расти. Потом разлейте его по банкам и добавьте разные пищевые красители. Заготовленные палочки опустите в банку с сиропом так, чтобы они не касались стенок и дна банки, в этом поможет бельевая прищепка.

Объяснение : С остыванием воды растворимость сахара понижается, и он начинает выпадать в осадок и оседать на стенках сосуда и на вашей палочке с затравкой из сахарных крупинок.

Зажженная спичка

Понадобятся : Спички, фонарик.

Опыт : Зажгите спичку и держите на расстоянии 10-15 сантиметров от стены. Посветите на спичку фонариком, и увидите, что на стене отражается только ваша рука и сама спичка. Казалось бы, очевидно, но я никогда об этом не задумывался.

Объяснение : Огонь не отбрасывает тени, так как не препятствует прохождению света сквозь себя.

Большинство людей, вспоминая свои школьные годы, уверены, что физика - это весьма скучный предмет. Курс включает множество задач и формул, которые никому в последующей жизни не пригодятся. С одной стороны, эти утверждения правдивы, но, как и любой предмет, физика имеет и другую сторону медали. Только ее не каждый открывает для себя.

Очень многое зависит от учителя

Возможно, в этом виновата наша система образования, а может быть, все дело в учителе, который думает только о том, что нужно отчитать утвержденный свыше материал, и не стремится заинтересовать своих учеников. Чаще всего виноват именно он. Однако если детям повезет, и урок у них будет вести преподаватель, который сам любит свой предмет, то он сможет не только заинтересовать учеников, но и поможет им открыть для себя что-то новое. Что в результате приведет к тому, что дети начнут с удовольствием посещать такие занятия. Конечно, формулы являются неотъемлемой частью этого учебного предмета, от этого никуда не деться. Но есть и положительные моменты. Особый интерес у школьников вызывают опыты. Вот об этом мы и поговорим более детально. Мы рассмотрим некоторые занимательные опыты по физике, которые вы сможете провести вместе со своим ребенком. Это должно быть интересно не только ему, но и вам. Вполне вероятно, что при помощи таких занятий вы привьете своему чаду неподдельный интерес к учебе, а любимым предметом для него станет "скучная" физика. проводить совсем несложно, для этого потребуется совсем немного атрибутов, главное, чтобы было желание. И, возможно, тогда вы сможете заменить своему ребенку школьного учителя.

Рассмотрим некоторые интересные опыты по физике для маленьких, ведь начинать нужно с малого.

Бумажная рыбка

Чтобы провести данный эксперимент, нам необходимо вырезать из плотной бумаги (можно картона) маленькую рыбку, длина которой должна составить 30-50 мм. Делаем в середине круглое отверстие диаметром примерно 10-15 мм. Далее со стороны хвоста прорезаем узкий канал (ширина 3-4 мм) до круглого отверстия. После чего наливаем воду в таз и аккуратно помещаем туда нашу рыбку таким образом, чтобы одна плоскость лежала на воде, а вторая - оставалась сухой. Теперь необходимо в круглое отверстие капнуть масла (можно воспользоваться масленкой от швейной машинки или велосипеда). Масло, стремясь разлиться по поверхности воды, потечет по прорезанному каналу, а рыбка под действием вытекающего назад масла поплывет вперед.

Слон и Моська

Продолжим проводить занимательные опыты по физике со своим ребенком. Предлагаем вам познакомить малыша с понятием рычага и с тем, как он помогает облегчать работу человека. Например, расскажите, что при помощи него легко можно приподнять тяжелый шкаф или диван. А для наглядности показать элементарный опыт по физике с применением рычага. Для этого нам понадобятся линейка, карандаш и пара маленьких игрушек, но обязательно разного веса (вот почему мы и назвали этот опыт «Слон и Моська»). Крепим нашего Слона и Моську на разные концы линейки при помощи пластилина, или обычной нитки (просто привязываем игрушки). Теперь, если положить линейку средней частью на карандаш, то перетянет, конечно же, слон, ведь он тяжелее. А вот если сместить карандаш в сторону слона, то Моська запросто перевесит его. Вот в этом и заключается принцип рычага. Линейка (рычаг) опирается на карандаш - это место является точкой опоры. Далее ребенку следует рассказать, что этот принцип используется повсеместно, он заложен в основу работы крана, качелей и даже ножниц.

Домашний опыт по физике с инерцией

Нам понадобятся банка с водой и хозяйственная сетка. Ни для кого не будет секретом, что если открытую банку перевернуть, то вода выльется из нее. Давайте попробуем? Конечно, для этого лучше выйти на улицу. Ставим банку в сетку и начинаем плавно раскачивать ее, постепенно наращивая амплитуду, и в результате делаем полный оборот - один, второй, третий и так далее. Вода не выливается. Интересно? А теперь заставим воду выливаться вверх. Для этого возьмем жестяную банку и сделаем в донышке отверстие. Ставим в сетку, наполняем водой и начинаем вращать. Из отверстия бьет струя. Когда банка в нижнем положении, это не удивляет никого, а вот когда она взлетает вверх, то и фонтан продолжает бить в том же направлении, а из горловины - ни капли. Вот так-то. Все это может объяснить принцип инерции. При вращении банка стремится улететь прямо, а сетка не пускает ее и заставляет описывать окружности. Вода также стремится лететь по инерции, а в том случае, когда мы в донышке сделали отверстие, ей уже ничего не мешает вырваться и двигаться прямолинейно.

Коробок с сюрпризом

Теперь рассмотрим опыты по физике со смещением Нужно положить спичечный коробок на край стола и медленно двигать его. В тот момент, когда он пройдет свою среднюю отметку, произойдет падение. То есть масса выдвинутой за край столешницы части превысит вес оставшейся, и коробок опрокинется. Теперь сместим центр массы, например, положим внутрь (как можно ближе к краю) металлическую гайку. Осталось поместить коробок таким образом, чтобы малая ее часть оставалась на столе, а большая висела в воздухе. Падения не произойдет. Суть этого эксперимента заключатся в том, что вся масса находится выше точки опоры. Этот принцип также используется повсюду. Именно благодаря ему в устойчивом положении находятся мебель, памятники, транспорт, и многое другое. Кстати, детская игрушка Ванька-встанька тоже построена на принципе смещения центра массы.

Итак, продолжим рассматривать интересные опыты по физике, но перейдем к следующему этапу - для школьников шестых классов.

Водяная карусель

Нам потребуются пустая консервная банка, молоток, гвоздь, веревка. Пробиваем при помощи гвоздя и молотка в боковой стенке у самого дна отверстие. Далее, не вытягивая гвоздь из дырки, отгибаем его в сторону. Необходимо, чтобы отверстие получилось косое. Повторяем процедуру со второй стороны банки - сделать нужно так, чтобы дырки получились друг напротив друга, однако гвозди были загнуты в разные стороны. В верхней части сосуда пробиваем еще два отверстия, в них продеваем концы каната или толстой нити. Подвешиваем емкость и наполняем ее водой. Из нижних отверстий начнут бить два косых фонтана, а банка начнет вращаться в противоположную сторону. На этом принципе работаю космические ракеты - пламя из сопел двигателя бьет в одну сторону, а ракета летит в другую.

Опыты по физике - 7 класс

Проведем эксперимент с плотностью масс и узнаем, как можно заставить яйцо плавать. Опыты по физике с различными плотностями лучше всего проводить на примере пресной и соленой воды. Возьмем банку, заполненную горячей водой. Опустим в нее яйцо, и оно сразу утонет. Далее насыпаем в воду поваренную соль и размешиваем. Яйцо начинает всплывать, причем, чем больше соли, тем выше оно поднимется. Это объясняется тем, что соленая вода имеет более высокую плотность, чем пресная. Так, всем известно, что в Мертвом море (его вода самая соленая) практически невозможно утонуть. Как видите, опыты по физике могут существенно увеличить кругозор вашего ребенка.

и пластиковая бутылка

Школьники седьмых классов начинают изучать атмосферное давление и его воздействие на окружающие нас предметы. Чтобы раскрыть эту тему глубже, лучше провести соответствующие опыты по физике. Атмосферное давление оказывает влияние на нас, хоть и остается невидимым. Приведем пример с воздушным шаром. Каждый из нас может его надуть. Затем мы поместим его в пластиковую бутылку, края оденем на горлышко и зафиксируем. Таким образом, воздух сможет поступать только в шар, а бутылка станет герметичным сосудом. Теперь попробуем надуть шар. У нас ничего не получится, так как атмосферное давление в бутылке не позволит нам этого сделать. Когда мы дуем, шар начинает вытеснять воздух в сосуде. А так как бутылка у нас герметична, то ему деваться некуда, и он начинает сжиматься, тем самым становится гораздо плотнее воздуха в шаре. Соответственно, система выравнивается, и шар надуть невозможно. Теперь сделаем отверстие в донышке и пробуем надуть шар. В таком случае никакого сопротивления нет, вытесняемый воздух покидает бутылку - атмосферное давление выравнивается.

Заключение

Как видите, опыты по физике совсем не сложные и довольно интересные. Попробуйте заинтересовать своего ребенка - и учеба для него будет проходить совсем по-другому, он начнет с удовольствием посещать занятия, что в конце концов скажется и на его успеваемости.

И вместе с ними познавать мир и чудеса физических явлений? Тогда приглашаем в нашу "экспериментальную лабораторию", в которой мы расскажем, как создавать простые, но очень интересные эксперименты для детей.


Эксперименты с яйцом

Яйцо с солью

Яйцо опустится на дно, если Вы поместите его в стакан с обычной водой, но что произойдет, если в воду добавить соль? Результат очень интересен и может наглядно показать интересные факты о плотности.

Вам понадобятся:

  • Поваренная соль
  • Высокий стакан.

Инструкция:

1. Половину стакана наполняем водой.

2. Добавляем в стакан много соли (около 6 столовых ложек).

3. Мешаем.

4. Осторожно опускаем яйцо в воду и наблюдаем за происходящим.

Объяснение

Соленая вода имеет большую плотность, чем обычная водопроводная. Именно соль поднимает яйцо на поверхность. А если добавлять в уже имеющуюся соленую воду пресную, то яйцо будет постепенно опускаться на дно.

Яйцо в бутылке


Знаете ли Вы, что вареное цельное яйцо можно легко поместить в бутылку?

Вам понадобятся:

  • Бутылка с диаметром горлышка меньшим диаметра яйца
  • Вареное яйцо вкрутую
  • Спички
  • Немного бумаги
  • Растительное масло.

Инструкция:

1. Смажьте горлышко бутылки растительным маслом.

2. Теперь поджигайте бумагу (можно просто несколько спичек) и сразу кидайте в бутылку.

3. Положите на горлышко яйцо.

Когда огонь погаснет, яйцо окажется внутри бутылки.

Объяснение

Огонь провоцирует нагревание воздуха в бутылке, который выходит наружу. После того, как погаснет огонь, воздух в бутылке начнет охлаждаться и сжиматься. Поэтому в бутылке образуется низкое давление, а наружное давление заталкивает яйцо в бутылку.

Эксперимент с шариком


Этот опыт показывает, как взаимодействуют между собой резина и апельсиновая цедра.

Вам понадобятся:

  • Воздушный шарик
  • Апельсин.

Инструкция:

1. Надуйте воздушный шарик.

2. Почистите апельсин, но апельсиновую шкурку (цедру) не выбрасывайте.

3. Выжмите апельсиновую цедру над шариком, после чего он лопнет.

Объяснение.

Цедра апельсина содержит вещество лимонен. Он способен растворять резину, что и происходит с шариком.

Эксперимент со свечой


Интересный эксперимент, показывающий возгорание свечи на расстоянии.

Вам понадобятся:

  • Обычная свеча
  • Спички или зажигалка.

Инструкция:

1. Зажгите свечу.

2. Через несколько секунд потушите ее.

3. Теперь поднесите горящее пламя к дыму, исходящему от свечи. Свеча снова начнет гореть.

Объяснение

Дым, поднимающийся вверх от погасшей свечи, содержит парафин, который быстро загорается. Горящие пары парафина доходят до фитиля, и свеча снова начинает гореть.

Сода с уксусом


Шарик, который сам надувается, это очень интересное зрелище.

Вам понадобятся:

  • Бутылка
  • Стакан уксуса
  • 4 чайных ложки соды
  • Воздушный шарик.

Инструкция:

1. Наливаем стакан уксуса в бутылку.

2. Засыпаем соду в шарик.

3. Надеваем шарик на горлышко бутылки.

4. Медленно ставим шарик вертикально, высыпая при этом соду в бутылку с уксусом.

5. Наблюдаем за тем, как надувается шарик.

Объяснение

Если добавлять соду в уксус, то происходит процесс, называемый гашение соды. Во время данного процесса выделяется углекислый газ, который и надувает наш шарик.

Невидимые чернила


Поиграйте со своим ребенком в секретного агента и создайте свои невидимые чернила.

Вам понадобятся:

  • Половина лимона
  • Ложка
  • Миска
  • Ватный тампон
  • Белая бумага
  • Лампа.

Инструкция:

1. Выжмите немного лимонного сока в миску и добавьте столько же воды.

2. Опустите ватный тампон в смесь и напишите что-нибудь на белой бумаге.

3. Подождите, пока сок высохнет, и полностью станет невидимым.

4. Когда вы будете готовы, чтобы прочитать секретное сообщение или показать его кому-то еще, нагрейте бумагу, держа ее близко к лампочке или к огню.

Объяснение

Лимонный сок является органическим веществом, которое окисляется и становится коричневым при нагревании. Разбавленный лимонный сок в воде делает его трудно заметным на бумаге, и никто не будет знать, что там есть лимонный сок, пока он не нагреется.

Другие вещества, которые работают по такому же принципу:

  • Апельсиновый сок
  • Молоко
  • Луковый сок
  • Уксус
  • Вино.

Как сделать лаву


Вам понадобятся:

  • Подсолнечное масло
  • Сок или пищевой краситель
  • Прозрачный сосуд (можно стакан)
  • Какие-либо шипучие таблетки.

Инструкция:

1. Сперва наливаем сок в стакан так, чтобы он заполнил примерно 70% объема тары.

2. Оставшуюся часть стакана заполняем подсолнечным маслом.

3. Теперь ждем, пока сок отделится от подсолнечного масла.

4. Бросаем в стакан таблетку и наблюдаем эффект, похожий на лаву. Когда таблетка растворится, то можно бросить еще одну.

Объяснение

Масло отделяется от воды, так как оно имеет меньшую плотность. Растворяясь в соке, таблетка выделяет углекислый газ, который захватывает части сока и поднимает его наверх. Газ выходит полностью из стакана, когда достигает вершины, при этом частицы сока падают обратно вниз.

Таблетка шипит за счет того, что содержит лимонную кислоту и соду (бикарбонат натрия). Оба эти ингредиента вступают в реакцию с водой с образованием цитрата натрия и газообразного диоксида углерода.

Эксперимент со льдом


На первый взгляд можно подумать, что кубик льда, находясь сверху, в конечном итоге плавится, за счет чего и должен заставить воду разлиться, но так ли это на самом деле?

Вам понадобятся:

  • Стакан
  • Кубики льда.

Инструкция:

1. Заполните стакан теплой водой до самого края.

2. Осторожно опустите кубики льда.

3. Наблюдайте внимательно за уровнем воды.

По мере таяния льда уровень воды совершенно не меняется.

Объяснение

Когда вода замерзает, превращаясь в лед, она расширяется, увеличивая свой объем (вот почему зимой могут разрываться даже отопительные трубы). Вода из растаявшего льда занимает меньше места, чем сам лед. Поэтому когда кубик льда тает, уровень воды остается примерно такой же.

Как сделать парашют


Узнайте о сопротивлении воздуха, сделав небольшой парашют.

Вам понадобятся:

  • Полиэтиленовый пакет или другой легкий материал
  • Ножницы
  • Маленький груз (возможно, какая-либо фигурка).

Инструкция:

1. Вырезаем большой квадрат из полиэтиленового пакета.

2. Теперь обрезаем края так, чтобы получился восьмиугольник (восемь одинаковых сторон).

3. Теперь привязываем 8 отрезков нитей к каждому углу.

4. Не забудьте сделать небольшое отверстие в середине парашюта.

5. Другие концы нитей привяжите на маленький груз.

6. Используем стул или находим высокую точку, чтобы запустить парашют и проверить, как он летает. Помните, что парашют должен лететь как можно медленнее.

Объяснение

Когда выпускается парашют, груз тянет его вниз, но при помощи строп парашют занимает большую площадь, которая сопротивляется воздуху, за счет чего груз медленно опускается. Чем больше площадь поверхности парашюта, тем больше сопротивляется эта поверхность падению, и тем медленнее будет опускаться парашют.

Небольшое отверстие в середине парашюта позволяет воздуху медленно проходить через него, а не заваливать парашют на одну сторону.

Как сделать торнадо


Узнайте, как сделать торнадо в бутылке с этим веселым научным экспериментом для детей. Использованные в эксперименте предметы легко найти в обиходе. Сделанный домашний мини-торнадо намного безопаснее торнадо, который показывают по телевидению в степях Америки.

Опыт 1 Четыре этажа Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт. Этапы проведения опыта ПОПРОБУЕМ НАЛИТЬ В СТАКАН ЧЕТЫРЕ РАЗНЫХ ЖИДКОСТИ ТАК, ЧТОБЫ ОНИ НЕ СМЕШАЛИСЬ И СТОЯЛИ ОДНА НАД ДРУГОЙ В ПЯТЬ ЭТАЖЕЙ. ВПРОЧЕМ, НАМ УДОБНЕЕ БУДЕТ ВЗЯТЬ НЕ СТАКАН, А УЗКИЙ, РАСШИРЯЮЩИЙСЯ К ВЕРХУ БОКАЛ. 1. НАЛИТЬ НА ДНО БОКАЛА СОЛЁНОЙ ПОДКРАШЕННОЙ ВОДЫ. 2. СВЕРНУТЬ ИЗ БУМАГИ ФУНТИК И ЗАГНУТЬ ЕГО КОНЕЦ ПОД ПРЯМЫМ УГЛОМ; КОНЧИК ЕГО ОТРЕЗАТЬ. ОТВЕРСТИЕ В ФУНТИКЕ ДОЛЖНО БЫТЬ ВЕЛИЧИНОЙ С БУЛАВОЧНУЮ ГОЛОВКУ. НАЛИТЬ В ЭТОТ РОЖОК КРАСНОГО ВИНА; ТОНКАЯ СТРУЙКА ДОЛЖНА ВЫТЕКАТЬ ИЗ НЕГО ГОРИЗОНТАЛЬНО, РАЗБИВАТЬСЯ О СТЕНКИ БОКАЛА И ПО НЕМУ СТЕКАТЬ НА СОЛЁНУЮ ВОДУ. КОГДА СЛОЙ КРАСНОГО ВИНА ПО ВЫСОТЕ СРАВНЯЕТСЯ С ВЫСОТОЙ СЛОЯ ПОДКРАШЕННОЙ ВОДЫ, ПРЕКРАТИТЬ ЛИТЬ ВИНО. 3. ИЗ ВТОРОГО РОЖКА НАЛЕЙ ТАКИМ ЖЕ ОБРАЗОМ В БОКАЛ ПОДСОЛНЕЧНОГО МАСЛА. 4. ИЗ ТРЕТЬЕГО РОЖКА НАЛИТЬ СЛОЙ КРАШЕННОГО СПИРТА.




Опыт 2 Удивительный подсвечник Приборы и материалы: свеча, гвоздь, стакан, спички, вода. Этапы проведения опыта Утяжелить конец свечи гвоздём. Рассчитать величину гвоздя так, чтобы свеча вся погрузилась в воду, только фитиль и самый кончик парафина должны выступать над водой. Зажечь фитиль. - Позволь, - скажут тебе, - ведь через минуту свеча догорит до воды и погаснет! - В том-то и дело, - ответишь ты, - что свеча с каждой минутой короче. А раз короче, значит и легче. Раз легче, значит, она всплывёт. И, правда, свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому- то наша свеча и догорит до конца. Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.


Опыт 3 Свеча за бутылкой Приборы и материалы: свеча, бутылка, спички Этапы проведения опыта Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на см. Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды. Объяснение опыта Свеча гаснет потому, что бутылка воздухом Обтекается: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.


Опыт 4 Вертящаяся змейка Приборы и материалы: плотная бумага, свеча, ножницы. Этапы проведения опыта 1. Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки. 2. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться. Объяснение опыта Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.


Опыт 5 Извержение Везувия Приборы и материалы: стеклянный сосуд, пузырёк, пробку, спиртовая тушь, вода. Этапы проведения опыта В широкий стеклянный сосуд, наполненный водой, поставить пузырёк спиртовой туши. В пробке пузырька должно быть небольшое отверстие. Объяснение опыта Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.


Опыт 6 Пятнадцать спичек на одной Приборы и материалы: 15 спичек. Этапы проведения опыта Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички? Объяснение опыта Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку


Опыт 8 Парафиновый мотор Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички. Этапы проведения опыта Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только … свеча. 1. Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя. 2. Положить свечу спицей на края двух стаканов и уравновесить. 3. Зажечь свечу с обоих концов. Объяснение опыта Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.


Опыт 9 Свободный обмен жидкостями Приборы и материалы: апельсин, бокал, красное вино или молоко, воду, 2 зубочистки. Этапы проведения опыта Осторожно разрезать апельсин пополам, очистить так, чтобы кожица снялась целой чашечкой. Проткнуть в дне этой чашечки два отверстия рядом и положить её в бокал. Диаметр чашечки должен быть немного больше диаметра центральной части бокала, тогда чашечка удержится на стенках, не падая на дно. Опустить апельсинную чашечку в сосуд на одну треть высоты. Налить в апельсинную корку красного вина или подкрашенного спирта. Оно будет проходить через дырку, пока уровень вина не дойдёт до дна чашечки. Затем налить воды почти до края. Можно увидеть, как струя вина поднимается через одно из отверстий до уровня воды, между тем как вода, более тяжёлая, пройдет через другое отверстие и станет опускаться ко дну бокала. Через несколько мгновений вино очутится на верху, а вода внизу.


Диффузия жидкостей и газов Диффузия (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах Демонстрационный эксперимент «Наблюдение диффузии» Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии. Этапы проведения эксперимента Возьмём два кусочка ватки. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом. Приведём ветки в соприкосновение. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.



Толстый воздух Мы живём благодаря воздуху, которым мы дышим. Если тебе не кажется это достаточно волшебным, проделай этот эксперимент, чтобы узнать, на какую ещё магию способен воздух. Реквизит Защитные очки Сосновая дощечка 0,3 х 2,5 х 60 см (можно приобрести в любом магазине пиломатериалов) Газетный лист Линейка Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Надень защитные очки. Объяви зрителям: « В мире есть два вида воздуха. Один из них – тощий, а другой – жирный. Сейчас я с помощью жирного воздуха совершу волшебство ». Положи на стол дощечку так, чтобы примерно 6 дюймов (15 см) выступало на край стола. Произнеси: « Толстый воздух садись на дощечку ». Ударь по концу дощечки, который выступает за край стола. Дощечка подпрыгнет в воздух. Скажи зрителям, что на дощечку сел должно быть тощий воздух. Опять положи дощечку на стол как в пункте 2. Положи на дощечку газетный лист, как показано на рисунке, чтобы дощечка была посередине листа. Разгладь газету, чтобы между ней и столом не осталось воздуха. Снова скажи: « Толстый воздух, садись на дощечку ». Ударь по выступающему концу ребром ладони. Результат Когда ты ударяешь по дощечке в первый раз, она подпрыгивает. Но если ударить по дощечке, на которой лежит газета, дощечка ломается. Объяснение Когда ты разглаживаешь газету, ты удаляешь из-под неё почти весь воздух. Вместе с тем большое количество воздуха сверху газеты давит на неё с большой силой. Когда ты ударяешь по дощечке, она ломается, потому что давление воздуха на газету не даёт дощечке подняться вверх в ответ на приложенную тобой силу.


Непромокаемая бумага Реквизит Бумажное полотенце Стакан Пластиковая миска или ведёрко, в которое можно налить достаточное количество воды, чтобы она полностью покрыла стакан Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Объяви зрителям: "C помощью своего магического мастерства я смогу сделать так, чтобы кусочек бумаги остался сухим ». Сомни бумажное полотенце и положи его на дно стакана. Переверни стакан и убедись, что комок бумаги остаётся на месте. Произнеси над стаканом какие-нибудь волшебные слова, например: « магические силы, оградите бумагу от воды ». Потом медленно опусти перевёрнутый стакан в миску с водой. Старайся держать стакан как можно ровнее, пока он не скроется под водой полностью. Вытащи стакан из воды и стряхни с него воду. Переверни стакан дном книзу и достань бумагу. Дай зрителям пощупать её и убедиться, что она осталась сухой. Результат Зрители обнаруживают, что бумажное полотенце осталось сухим. Объяснение Воздух занимает определённый объём. В стакане есть воздух, в каком бы положении он не находился. Когда ты переворачиваешь стакан кверху дном и медленно опускаешь в воду, воздух остаётся в стакане. Вода из-за воздуха не может попасть в стакан. Давление воздуха оказывается больше, чем давление воды, стремящейся проникнуть внутрь стакана. Полотенце на дне стакана остаётся сухим. Если стакан под водой перевернуть набок, воздух в виде пузырьков будет выходить из него. Тогда сможет попасть в стакан.


Прилипчивый стакан Из этого эксперимента ты узнаешь, как благодаря воздуху предметы могут прилипать друг к другу. Реквизит 2 больших воздушных шарика 2 пластиковых стакана по 250 мл Помощник Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Вызови кого-нибудь из зрителей в качестве ассистента. Дай ему шарик и стаканчик, а другой шарик и стаканчик оставь себе. Пусть твой ассистент надует твой шарик примерно наполовину, и завяжет его. Теперь попроси его попытаться прилепить к шарику стаканчик. Когда он не сможет выполнить это, наступает твоя очередь. Надуй свой шарик примерно на треть. Приложи стаканчик к шарику сбоку. Удерживая стаканчик на месте, продолжай надувать шарик, пока он не будет надут по крайней мере на 2/3. Теперь отпусти стаканчик. Советы учёному волшебнику Докажи зрителям, что твой стаканчик не намазан клеем. Выпусти из шарика некоторое количество воздуха, и стаканчик отваливается. Что ещё можно сделать Попробуй одновременно прикрепить к шарику одновременно 2 стаканчика. Это потребует некоторой тренировки и помощи ассистента. Попроси его приложить к шарику два стаканчика, а потом надуй шарик, как было описано. Результат Когда ты надуешь шарик, стаканчик « прилипнет » к нему. Объяснение Когда ты прикладываешь стаканчик к шарику и надуваешь его, вокруг края стаканчика стенка шарика становится плоской. При этом объём воздуха внутри стаканчика слегка увеличивается, однако количество молекул воздуха остаётся прежним, поэтому давление воздуха внутри стаканчика уменьшается. Следовательно, атмосферное давление внутри стаканчика становится слегка меньшим, чем снаружи. Благодаря этой разницы в давлении стаканчик и удерживается на месте.


Упорная воронка Может ли воронка « отказываться » пропускать воду в бутылку? Проверь сам! Реквизит 2 воронки Две одинаковые чистые сухие пластиковые бутылки по 1 литру Пластилин Кувшин с водой Подготовка Вставь в каждую бутылку по воронке. Замажь горлышко одной из бутылок вокруг воронки пластилином,чтобы не осталось щели.Замажь горлышко одной из бутылок вокруг воронки пластилином,чтобы не осталось щели. Начинаем научное волшебство! Объяви зрителям: « У меня есть волшебная воронка, которая не пускает воду в бутылку »Объяви зрителям: « У меня есть волшебная воронка, которая не пускает воду в бутылку » Возьми бутылку без пластилина и налей в неё через воронку немного воды. Обясни зрителям: « Вот так ведёт себя большинство воронок ».Возьми бутылку без пластилина и налей в неё через воронку немного воды. Обясни зрителям: « Вот так ведёт себя большинство воронок ». Поставь на стол воронку с пластилином. Налей воды в воронку до верха. Посмотри, что будет. Результат Из воронки в бутылку протечёт несколько капель воды, а затем она прекратит течь совсем. Объяснение Это ещё один пример действия атмосферного давления. В первую бутылку вода течёт свободно. Вода, текущая через воронку в бутылку, замещает в ней воздух, который выходит через щели между горлышком и воронкой. В запечатанной пластилином бутылке тоже есть воздух, который обладает своим давлением. Вода в воронке тоже обладает давлением, которое возникает благодаря силе тяжести, тянущей воду вниз. Однако сила давления воздуха в бутылке превышает силу тяжести, действующую на воду. Поэтому вода не может попасть в бутылку. Если в бутылке или в пластилине будет хотя бы маленькая дырочка, воздух сможет выходить через неё. Из-за этого его давление в бутылке будет падать, и вода сможет течь в неё.


Разрушитель Как тебе уже должно быть известно из предыдущих опытов, настоящий волшебник может использовать силу давления воздуха в своих удивительных трюках. Из этого опыта ты узнаешь, как воздух может раздавить жестяную банку. Обратите внимание: для этого эксперимента понадобиться газовая или электрическая плита и помощь взрослых. Реквизит Форма для выпечки Водопроводная вода Линейка Газовая или электрическая лампа (пользоваться должен только взрослый помощник) Пустая жестяная банка Щипцы Взрослый ассистент Подготовка Налей в форму воды примерно на 2,5 см. Поставь её рядом с плитой. Налей немного воды в пустую банку от газированной воды – чтобы вода только прикрывала дно. После этого твой взрослый ассистент должен нагреть банку на плите. Вода должна сильно кипеть в течение примерно минуты, так, чтобы из банки шёл пар. Начинаем научное волшебство! Объяви зрителям, что сейчас ты раздавишь жестяную банку, не дотронувшись до неё. Попроси взрослого ассистента взять банку щипцами и быстро перевернуть её в форму с водой. Посмотри, что произойдёт. Советы учёному волшебнику Прежде чем твой помощник перевернёт банку, скажи какие-нибудь волшебные слова. Протяни руки над банкой и произнеси: « Жестянка, приказываю тебе расплющиться, как только тебя коснётся вода! » Что ещё можно сделать Попробуй повторить эксперимент с банкой большего размера, например, с литровой банкой из-под томатного сока. Открывая банку, сделай в крышке только небольшие отверстия. Перед проведением эксперимента вылей из банки содержимое и вымой её, но не открывай крышку полностью. Так же легко окажется раздавить такую банку, как банку из-под газировки? Результат Когда твой ассистент опустит перевёрнутую банку в форму с водой, банка тут же сплющится. Объяснение Банка сминается из-за изменения давления воздуха. Ты создаёшь внутри неё низкое давление, а затем более высоким давлением её сминает. В ненагретой банке содержится вода и воздух. Когда вода вскипает, она испаряется – превращается из жидкости в горячий водяной пар. Горячий пар замещает в банке воздух. Когда твой ассистент опускает перевёрнутую банку, воздух не может снова вернуться в неё. Холодная вода в форме охлаждает пар, оставшийся в банке. Он конденсируется-превращается из газа обратно в воду. Пар который занимал весь объём банки, превращается всего в несколько капель воды, которая занимает существенно меньше места, чем пар. В банке остаётся большое пустое пространство, практически не заполненное воздухом, поэтому давление там оказывается гораздо ниже, чем атмосферное давление снаружи. Воздух давит на банку снаружи, и она сминается.


Летающий мячик Видел ли ты, как на выступлении фокусника человек поднимается в воздух? Попробуй провести подобный эксперимент. Обрати внимание: Для этого эксперимента понадобиться фен и помощь взрослых. Реквизит Фен (пользоваться должен только взрослый помощник) 2 толстые книги или другие тяжёлые предметы Мячик для пинг-понга Линейка Взрослый ассистент Подготовка Установи фен на столе вверх отверстием, откуда дует горячий воздух. Чтобы установить его в таком положении, используй книги. Проверь, чтобы они не закрывали отверстие сбоку, где воздух засасывается в фен. Включи фен в розетку. Начинаем научное волшебство! Попроси кого-нибудь из взрослых зрителей стать твоим ассистентом. Объяви зрителям: « Сейчас я заставлю обыкновенный пинг-понговый шарик летать по воздуху ». Возьми шарик в руку и отпусти, чтобы он упал на стол. Скажи зрителям: « Ой! Я забыл сказать волшебные слова! » Произнеси над мячиком волшебные слова. Пусть твой ассистент включит фен на полную мощность. Аккуратно помести шарик над феном в струю воздуха, примерно в 45 см от выдувающего отверстия. Советы учёному волшебнику В зависимости от силы выдува, тебе, возможно, придётся поместить шарик немного выше или ниже, чем указано. Что ещё можно сделать Попробуй проделать тоже самое с мячиком разного размера и массы. Одинаково ли хорошо будет получаться опыт? Результат Шарик зависнет в воздухе над феном. Объяснение На самом деле этот трюк не противоречит силе тяжести. В нём демонстрируется важная способность воздуха, называемая принципом Бернулли. Принцип Бернулли – закон природы, согласно которому любое давление любого текучего вещества, в том числе воздуха, уменьшается с ростом скорости его движения. Иначе говоря при низкой скорости потока воздуха он имеет высокое давление. Воздух, выходящий из фена, движется очень быстро и следовательно его давление невелико. Мячик со всех сторон становится окружён областью низкого давления, которая образует конус у отверстия фена. Воздух вокруг этого конуса обладает более высоким давлением, и не даёт мячику выпасть из зоны низкого давления. Сила тяжести тянет его вниз, а сила воздуха тянет его вверх. Благодаря совместному действию этих сил, шарик и зависает в воздухе над феном.


Волшебный мотор В этом эксперименте ты сможешь заставить лист бумаги работать, как мотор – конечно, с помощью воздуха. Реквизит Клей Квадратный кусок дерева 2,5 х 2,5 см Швейная иголка Бумажный квадрат 7, 5 х 7,5 см Подготовка Нанеси каплю клея в центре деревяшки. Установи в клей иголку острым концом вверх, под прямым углом (перпендикулярно) к деревяшке. Держи её в таком положении, пока клей не застынет настолько, что иголка будет стоять самостоятельно. Сложи бумажный квадрат по диагонали (угол к углу). Разверни, и сложи по другой диагонали. Снова разверни бумагу. Там, где пересекаются линии сгиба, находится центр листа. Лист бумаги должен выглядеть как низкая, уплощённая пирамида. Начинаем научное волшебство! Объяви зрителям: « Теперь у меня есть волшебная сила, которая поможет мне запустить маленький бумажный моторчик ». Поставь на стол деревяшку с иголкой. Положи на иголку бумагу, так, чтобы её центр оказался на острие иголки. 4 стороны пирамиды должны свисать вниз. Произнеси волшебные слова, например: « Волшебная энергия, заведи мой мотор! » Потри ладони 5-10 раз, потом сложи их вокруг пирамиды на расстоянии около 2,5 см от краёв бумаги. Посмотри, что получиться. Результат Бумага сначала будет качаться, а затем начнёт вращаться по кругу. Объяснение Веришь или нет, но бумагу заставит двигаться тепло от твоих рук. Когда ты трёшь ладони друг о друга, между ними возникает трение – сила, которая тормозит движение соприкасающихся предметов. Из-за трения предметы разогреваются, значит, и трение твоих ладоней производит тепло. Тёплый воздух всегда движется от тёплого места к холодному. Воздух, соприкасающийся с твоими ладонями, нагревается. Тёплый воздух поднимается вверх, так как расширяется и становится мене плотным, следовательно, более лёгким. Двигаясь, воздух соприкасается с бумажной пирамидой, заставляя двигаться и её. Такое перемещение тёплого и холодного воздуха называется конвекцией. Конвекция – это такой процесс, при котором в жидкости или газе возникают потоки тепла.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»