Что делает биссектриса с противоположной стороной треугольника. Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Сорокина Вика

Приведено доказательства свойств биссектрисы треугольника и рассмотрено применение теориик решению задач

Скачать:

Предварительный просмотр:

Комитет по образованию администрации г. Саратова, Октябрьский район Муниципальное автономное образовательное учреждение Лицей №3 им. А. С. Пушкина.

Муниципальная научно-практическая

конференция

«Первые ступени»

Тема: Биссектриса и ее свойства.

Работу выполнила: ученица 8 г класса

Сорокина Виктория Научный руководитель: Учитель математики высшей категории Попова Нина Федоровна.

Саратов 2011 г

  1. Титульный лист…………………………………………………………...1
  2. Содержание ………………………………………………………………2
  3. Введение и цели………………………………………………………... ..3
  4. Рассмотрение свойств биссектрисы
  • Третье геометрическое место точек………………………………….3
  • Теорема 1……………………………………………………………....4
  • Теорема 2………………………………………………………………4
  • Основное свойство биссектрисы треугольника:
  1. Теорема 3……………………………………………………………...4
  2. Задача 1…………………………………………………………… ….7
  3. Задача 2……………………………………………………………….8
  4. Задача 3…………………………………………………………….....9
  5. Задача 4…………………………………………………………….9-10
  • Теорема 4…………………………………………………………10-11
  • Формулы нахождения биссектрисы:
  1. Теорема 5…………………………………………………………….11
  2. Теорема 6…………………………………………………………….11
  3. Теорема 7…………………………………………………………….12
  4. Задача 5…………………………………………………………...12-13
  • Теорема 8…………………………………………………………….13
  • Задача 6………………………………………………………...…….14
  • Задача 7……………………………………………………………14-15
  • Определение с помощью биссектрисы сторон света………………15
  1. Заключение и вывод……………………………………………………..15
  2. Список используемой литературы ……………………………………..16

Биссектриса

На уроке геометрии, изучая тему подобные треугольники, я встретилась с задачей на теорему об отношении биссектрисы к противолежащим сторонам. Казалось бы, что может быть интересного в теме биссектриса, однако эта тема меня заинтересовала, и мне захотелось изучить ее глубже. Ведь биссектриса очень богата своими удивительными свойствами, помогающими решать разные задачи.

При рассмотрении данной темы можно заметить,что в учебниках геометрии очень мало говорится о свойствах биссектрисы, а на экзаменах, зная их можно значительно проще и быстрее решать задачи. К тому же для сдачи ГИА и ЕГЭ современным ученикам нужно самим изучать дополнительные материалы к школьной программе. Именно поэтому я и решила подробнее изучить тему биссектриса.

Биссектриса (от лат. bi- «двойное», и sectio «разрезание») угла - луч с началом в вершине угла, делящий угол на две равные части. Биссектриса угла (вместе с её продолжением) есть геометрическое место точек равноудалённых от сторон угла (или их продолжений )

Третье геометрическое место точек

Фигура F является геометрическим местом точек (множеством точек), обладающих некоторым свойством А, если выполняются два условия:

  1. из того, что точка принадлежит фигуре F, следует, что она обладает свойством А;
  2. из того, что точка удовлетворяет свойству А, следует, что она принадлежит фигуре F.

Первое геометрическое место точек, рассматриваемое в геометрии - это окружность, т.е. геометрическое место точек, равноудаленных от одной фиксированной точки. Второе - серединный перпендикуляр отрезка, т.е. геометрическое место точек, равноудаленных от конца отрезка. И, наконец, третье - биссектриса - геометрическое место точек, равноудаленных от сторон угла

Теорема 1:

Точки биссектрисы одинаково удалены от стор он угла.

Доказательство:

Пусть Р - точка биссектрисы А. Опустим из точки Р перпендикуляры РВ и PC на стороны угла . Тогда ВАР = САР по гипотенузе и острому углу . Отсюда, РВ = PC

Теорема 2 :

Если точка Р одинаково удалена от сторон угла А, то она лежит на биссектрисе .

Доказательство: РВ = PC => ВАР = САP => BAP= CAP => АР – биссектриса.

К числу основных геометрических фактов следует отнести теорему о том, что биссектриса делит противолежащую сторону в отношении противолежащих сторон. Этот факт долго оставался в тени но повсеместно встречаются задачи, которые гораздо легче решать, если знать этот и другие факты о биссектрисе. Мне стало интересно, и я решила глубже исследовать это свойство биссектрисы.

Основное свойство биссектрисы угла треугольника

Теорема 3 . Биссектриса делит противолежащую сторону треугольника в отношении прилежащих сторон .

Доказательство 1:

Дано : AL - биссектриса треугольника ABC

Доказать:

Доказательство: Пусть F - точка пересечения прямой AL и прямой, проходящей через точку В параллельно стороне АС.

Тогда BFA = FАС = BAF. Следовательно, BAF равнобедренный и АВ = BF. Из подобия треугольников ALC и FLB имеем

соотношение

откуда

Доказательство 2

Пусть F- точка пересеченная прямой AL и прямой, проходящей через точку С параллельно основанию АВ. Тогда можно повторить рассуждения.

Доказательство 3

Пусть К и М - основания перпендикуляров, опущенных на прямую AL из точек В и С соответственно. Треугольники ABL и ACL подобны по двум углам. Поэтому
. А из подобия BKL и CML имеем

Отсюда

Доказательство 4

Применим метод площадей. Вычислим площади треугольников ABL и ACL двумя способами.

Отсюда .

Доказательство 5

Пусть α= ВАС,φ= BLA. По теореме синусов в треугольнике ABL

А в треугольнике ACL .

Так как ,

То, поделив обе части равенства на соответствующие части другого, получим .

Задача 1


Дано: В треугольнике ABC, ВК – биссектриса, ВС=2, КС=1,

Решение:

Задача 2

Дано:

Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18

Решение:

Пусть катет AC = 18, катет BC = 24,

AM - биссектриса треугольника.

По теореме Пифагора находим,

что AB = 30.

Поскольку , то

Аналогично найдем вторую биссектрису.

Ответ:

Задача 3

В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC

В точке D . Известно, что BD = 4, DC = 6.

Найдите площадь треугольника ADC

Решение:

По свойству биссектрисы треугольника

Обозначим AB = 2 x , AC = 3 x . По теореме

Пифагора BC 2 + AB 2 = AC 2 , или 100 + 4 x 2 = 9 x 2

Отсюда находим, что x = Тогда AB = , S ABC=

Следовательно,

Задача 4

Дано:

В равнобедренном треугольнике ABC боковая сторона AB равна 10, основание AC равно 12.

Биссектрисы углов A и C пересекаются в точке D . Найдите BD .

Решение:

Поскольку биссектрисы треугольника пересекаются в

Одной точке, то BD - биссектриса B . Продолжим BD до пересечения с AC в точке M . Тогда M - середина AC , BM AC . Поэтому

Поскольку CD - биссектриса треугольника BMC , то

Следовательно,.

Ответ:

Теорема 4 . Три биссектрисы треугольника пересекаются в одной точке.

Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК 1 и ВК 2 . Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК 3 , то есть в точке Р пересекаются все три биссектрисы.


Формулы нахождения биссектрисы
Теорема5: (первая формула для биссектрисы ): Если в треугольнике ABC отрезок AL является биссектрисой A, то AL² = AB·AC - LB·LC.

Доказательство: Пусть M - точка пересечения прямой AL с окружностью, описанной около треугольника ABC (рис. 41). Угол BAM равен углу MAC по условию. Углы BMA и BCA равны как вписанные углы, опирающиеся на одну хорду. Значит, треугольники BAM и LAC подобны по двум углам. Следовательно, AL: AC = AB: AM. Значит, AL · AM = AB · AC AL · (AL + LM) = AB · AC AL² = AB · AC - AL · LM = AB · AC - BL · LC. Что и требовалось доказать.

Теорема6: . (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и A, равным 2α и биссектрисой l, имеет место равенство:
l = (2ab / (a+b)) · cosα.

Доказательство : Пусть ABC - данный треугольник, AL - его биссектриса, a=AB, b=AC, l=AL. Тогда S ABC = S ALB + S ALC . Следовательно, ab sin2α = a l sinα + b l sinα 2ab sinα·cosα = (a + b)·l sinα l = 2·(ab / (a+b))· cosα. Теорема доказана.

Теорема 7: Если a,b – стороны треугольника,Ү- угол между ними, - биссектриса этого угла. Тогда .

Средний уровень

Биссектриса треугольника. Подробная теория с примерами (2019)

Биссектриса треугольника и ее свойства

Знаешь ли ты, что такое середина отрезка? Конечно же знаешь. А центр круга? Тоже. А что такое середина угла? Ты можешь сказать, что такого не бывает. Но почему же, отрезок можно разделить пополам, а угол нельзя? Вполне можно - только не точкой, а…. линией.

Помнишь шутку: биссектриса это крыса, которая бегает по углам и делит угол пополам. Так вот, настоящее определение биссектрисы очень похоже на эту шутку:

Биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы. Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… Нам же знание этих свойств поможет решить некоторые задания ГИА и ЕГЭ!

Первое знание, которое поможет в этом - биссектриса равнобедренного треугольника.

Кстати, а помнишь ли ты все эти термины? Помнишь чем они отличаются друг от друга? Нет? Не страшно. Сейчас разберемся.

Итак, основание равнобедренного треугольника - это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно - это сторона.

Медиана - это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова) пополам.

Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.

Ну, а высота - это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Итак, разобрались? Ну почти. Чтобы еще лучше понять и навсегда запомнить что такое биссектриса, медиана и высота, их нужно сравнить друг с другом и понять в чем они похожи и чем они отличаются друг от друга. При этом, чтобы лучше запомнить, лучше описать все «человеческим языком». Потом ты легко будешь оперировать языком математики, но сначала ты этот язык не понимаешь и тебе нужно осмыслить все на своем языке.

Итак, в чем они похожи ? Биссектриса, медиана и высота - все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной. По-моему просто, нет?

А чем они отличаются ?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Теперь все. Понять - легко. А раз понял, можешь запомнить.

Теперь следующий вопрос. Почему же в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Можно просто посмотреть на рисунок и убедиться, что медиана разбивает на два абсолютно равных треугольника. Вот и все! Но математики не любят верить своим глазам. Им нужно все доказывать. Страшное слово? Ничего подобного - все просто! Смотри: у и равны стороны и, сторона у них вообще общая и. (- биссектриса!) И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними. Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему ) и заключаем, что, а значит = и.

Это уже хорошо - значит, оказалась медианой.

А вот что такое?

Посмотрим на картинку - . А у нас получилось, что. Значит, и тоже! Наконец, ура! и.

Показалось ли тебе это доказательство тяжеловатым? Посмотри на картинку - два одинаковых треугольника говорят сами за себя.

В любом случае твердо запомни:

Теперь сложнее: мы посчитаем угол между биссектрисами в любом треугольнике! Не бойся, все не так уж хитро. Смотри на рисунок:

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ?

Применим этот потрясающий факт.

С одной стороны, из:

То есть.

Теперь посмотрим на:

Но биссектрисы, биссектрисы же!

Вспомним про:

Теперь через буквы

\angle AOC=90{}^\circ +\frac{\angle B}{2}

Не удивительно ли? Получилось, что угол между биссектрисами двух углов зависит только от третьего угла !

Ну вот, две биссектрисы мы посмотрели. А что, если их три??!! Пересекутся ли они все в одной точке?

Или будет так?

Как ты думаешь? Вот математики думали-думали и доказали:

Правда, здорово?

Хочешь знать, почему же так получается?

Итак…два прямоугольных треугольника: и. У них:

  • Общая гипотенуза.
  • (потому что - биссектриса!)

Значит, - по углу и гипотенузе. Поэтому и соответствующие катеты у этих треугольников - равны! То есть.

Доказали, что точка одинаково (или равно) удалена от сторон угла. С пунктом 1 разобрались. Теперь перейдём к пункту 2.

Почему же верно 2?

И соединим точки и.

Значит, то есть лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что

И можно пользоваться равенством.

3. Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её .

Что мы тут оба раза применяли? Да пункт 1 , конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось и.

Но посмотри внимательно на эти два равенства! Ведь из них следует, что и, значит, .

А вот теперь в дело пойдёт пункт 2 : если расстояния до сторон угла равны, то точка лежит на биссектрисе…какого же угла? Ещё раз смотри на картинку:

и - расстояния до сторон угла, и они равны, значит, точка лежит на биссектрисе угла. Третья биссектриса прошла через ту же точку! Все три биссектрисы пересеклись в одной точке! И, как дополнительный подарок -

Радиусы вписанной окружности.

(Для верности посмотри ещё тему ).

Ну вот, теперь ты никогда не забудешь:

Точка пересечения биссектрис треугольника - центр вписанной в неё окружности.

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

4. Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например,

Случай 1

Здорово, правда? Давай поймём, почему так.

С одной стороны, - мы же проводим биссектрису!

Но, с другой стороны, - как накрест лежащие углы (вспоминаем тему ).

И теперь выходит, что; выкидываем середину: ! - равнобедренный!

Случай 2

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону за точку. Теперь получилось два угла:

  • - внутренний угол
  • - внешний угол - он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для, и для. Что же получится?

А получится прямоугольный!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма?

Конечно же, - ведь они все вместе составляют такой угол, что получается прямая.

А теперь вспомним, что и -биссектрисы и увидим, что внутри угла находится ровно половина от суммы всех четырех углов: и - - то есть ровно. Можно написать и уравнением:

Итак, невероятно, но факт:

Угол между биссектрисами внутреннего и внешнего угла треугольника равен.

Случай 3

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

(как соответственные при параллельных основаниях).

И опять, составляют ровно половину от суммы

Вывод: Если в задаче встретились биссектрисы смежных углов или биссектрисы соответственных углов параллелограмма или трапеции, то в этой задаче непременно участвует прямоугольный треугольник, а может даже и целый прямоугольник.

5. Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

То есть:

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова - выход в «космос» - дополнительное построение!

Проведём прямую.

Зачем? Сейчас увидим.

Продолжим биссектрису до пересечения с прямой.

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 - получается, что (- биссектриса)

Как накрест лежащие

Значит, - это тоже.

А теперь посмотрим на треугольники и.

Что про них можно сказать?

Они…подобны. Ну да, у них и углы равны как вертикальные. Значит, по двум углам.

Теперь имеем право писать отношения соответствующих сторон.

А теперь в коротких обозначениях:

Ой! Что-то напоминает, верно? Не это ли самое мы хотели доказать? Да-да, именно это!

Видишь, как здорово проявил себя «выход в космос» - построение дополнительной прямой - без неё ничего бы не вышло! А так, мы доказали, что

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника - не пугайся, теперь самое сложное кончилось - будет проще.

Получаем, что

Теорема 1:

Теорема 2:

Теорема 3:

Теорема 4:

Теорема 5:

Теорема 6:

СВОЙСТВА БИССЕКТРИСЫ

Свойство биссектрисы: В треугольнике биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.

Биссектриса внешнего угла Биссектриса внешнего угла треугольника пересекает продолжение его стороны в точке, расстояния от которой до концов этой стороны пропорциональны соответственно прилежащим сторонам треугольника. C B A D

Формулы длины биссектрисы:

Формула нахождения длин отрезков, на которые биссектриса делит противоположную сторону треугольника

Формула нахождения отношения длин отрезков, на которые биссектриса делится точкой пересечения биссектрис

Задача 1. Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 3:2, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 12 см.

Решение Воспользуемся формулой для нахождение отношения длин отрезков, на которые биссектриса делится точкой пересечения биссектрис в треугольнике:   a + c = = 18  P ∆ АВС = a + b + c = b +(a + c) = 12 + 18 = 30. Ответ: P = 30см.

Задача 2 . Биссектрисы BD и CE ∆ ABC пересекаются в точке О. АВ=14, ВС=6, АС=10. Найдите О D .

Решение. Воспользуемся формулой для нахождения длины биссектрисы: Имеем: BD = BD = = По формуле отношения отрезков, на которые биссектриса делится точкой пересечения биссектрис: l = . 2 + 1 = 3 части всего.

это 1 часть  OD = Ответ: OD =

Задачи В ∆ ABC проведены биссектрисы AL и BK . Найдите длину отрезка KL , если AB = 15, AK =7,5, BL = 5. В ∆ ABC проведена биссектриса AD , а через точку D прямая, параллельная AC и пересекающая AB в точке Е. Найдите отношение площадей ∆ ABC и ∆ BDE , если AB = 5, AC = 7. Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 см и 18см. В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.

5. В равнобедренном треугольнике основание и боковая сторона равны соответственно 5 и 20 см. Найдите биссектрису угла при основании треугольника. 6. Найдите биссектрису прямого угла треугольника, у которого катеты равны a и b . 7. Вычислите длину биссектрисы угла А треугольника ABC с длинам сторон a = 18 см, b =15 см, c = 12 см. 8. В треугольнике ABC длины сторон AB , BC и AC относятся как 2:4:5 соответственно. Найдите, в каком отношении делятся биссектрисы внутренних углов в точке их пересечения.

Ответы: Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: AP = 6 AP = 10 см. KL = CP =

Что такое биссектриса угла треугольника? На этот вопрос у некоторых людей с языка срывается небезызвестная крыса, бегающая по углам и делящая угол пополам". Если ответ должен быть "с юмором", то, возможно, он правилен. Но с научной точки зрения ответ на этот вопрос должен был бы звучать примерно так: начинающийся в вершине угла и делящий последний на две равные части". В геометрии эта фигура также воспринимается как отрезок биссектрисы до ее пересечения с противолежащей сторонй треугольника. Это не является ошибочным мнением. А что еще известно о биссектрисе угла, кроме ее определения?

Как и у любого геометрического места точек, у нее имеются свои признаки. Первый из них - скорее, даже не признак, а теорема, которую можно кратко выразить так: "Если биссектрисой разделить противоположную ей сторону на две части, то их отношение будет соответствовать отношению сторон большого треугольника".

Второе свойство, которое она имеет: точка пересечения биссектрис все углов называется инцентром.

Третий признак: биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в центре одной из трёх в нее вписанных окружностей.

Четвертое свойство биссектрисы угла треугольника в том, что если каждый из них равен, то последний является равнобедренным.

Пятый признак тоже касается равнобедренного треугольника и является главным ориентиром по его распознаванию на чертеже по биссектрисам, а именно: в равнобедренном треугольнике она одновременно выполняет роль медианы и высоты.

Биссектриса угла может быть построена с помощью циркуля и линейки:

Шестое правило гласит, что невозможно построить треугольник с помощью последних только при имеющихся биссектрисах, как и невозможно построить таким способом удвоение куба, квадратуру круга и трисекцию угла. Собственно говоря, это и есть все свойства биссектрисы угла треугольника.

Если вы внимательно читали предыдущий абзац, то, возможно, вас заинтересовало одно словосочетание. "Что такое трисекция угла?" - наверняка спросите вы. Триссектриса немного схожа с биссектрисой, но если начертить последнюю, то угол поделится на две равные части, а при построении трисекции - на три. Естественно, что биссектриса угла запоминается легче, ведь трисекцию в школе не учат. Но для полноты картины расскажу и о ней.

Триссектрису, как я уже сказала, нельзя построить только циркулем и линейкой, но ее возможно создать с помощью правил Фудзиты и некоторых кривых: улитки Паскаля, квадратрисы, конхоиды Никомеда, конических сечений,

Задачи по трисекции угла достаточно просто решаются при помощи невсиса.

В геометрии существует теорема о триссектрисах угла. Называется она теоремой Морли (Морлея). Она утверждает, что точки пересечения находящихся посередине триссектрис каждого угла будут вершинами

Маленький черный треугольник внутри большого всегда будет равносторонним. Эта теорема была открыта британским ученым Фрэнком Морли в 1904 году.

Вот сколько всего можно узнать о разделении угла: триссектриса и биссектриса угла всегда требуют детальных объяснений. А ведь здесь было приведено множество еще не раскрытых мной определений: улитка Паскаля, конхоида Никомеда и т.д. Не сомневайтесь, о них можно написать еще больше.

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:


Примеры углов: острый, тупой и прямой

Как видно из картинки, углы могут быть острыми, тупыми, прямыми — это сейчас неважно. Часто для удобства на каждом луче отмечают дополнительную точку и говорят, мол, перед нами угол $AOB$ (записывается как $\angle AOB$).

Капитан очевидность как бы намекает, что помимо лучей $OA$ и $OB$ из точки $O$ всегда можно провести ещё кучу лучей. Но среди них будет один особенный — его-то и называют биссектрисой.

Определение. Биссектриса угла — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:


Примеры биссектрис для острого, тупого и прямого угла

Поскольку на реальных чертежах далеко не всегда очевидно, что некий луч (в нашем случае это луч $OM$) разбивает исходный угол на два равных, в геометрии принято помечать равные углы одинаковым количеством дуг (у нас на чертеже это 1 дуга для острого угла, две — для тупого, три — для прямого).

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. Биссектриса угла — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

  1. Всякая точка, лежащая на биссектрисе некого угла, находится на одинаковом расстоянии от сторон этого угла.
  2. И наоборот: если точка лежит на одинаковом расстоянии от сторон данного угла, то она гарантированно лежит на биссектрисе этого угла.

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. Расстояние от точки до прямой — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Например, рассмотрим прямую $l$ и точку $A$, не лежащую на этой прямой. Проведём перпендикуляр $AH$, где $H\in l$. Тогда длина этого перпендикуляра и будет расстоянием от точки $A$ до прямой $l$.

Графическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:


Определяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Рассмотрим произвольный угол с вершиной $O$ и биссектрисой $OM$:

Докажем, что эта самая точка $M$ находится на одинаковом расстоянии от сторон угла.

Доказательство. Проведём из точки $M$ перпендикуляры к сторонам угла. Назовём их $M{{H}_{1}}$ и $M{{H}_{2}}$:

Провели перпендикуляры к сторонам угла

Получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. У них общая гипотенуза $OM$ и равные углы:

  1. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$ по условию (поскольку $OM$ — биссектриса);
  2. $\angle M{{H}_{1}}O=\angle M{{H}_{2}}O=90{}^\circ $ по построению;
  3. $\angle OM{{H}_{1}}=\angle OM{{H}_{2}}=90{}^\circ -\angle MO{{H}_{1}}$, поскольку сумма острых углов прямоугольного треугольника всегда равна 90 градусов.

Следовательно, треугольники равны по стороне и двум прилежащим углам (см. признаки равенства треугольников). Поэтому, в частности, $M{{H}_{2}}=M{{H}_{1}}$, т.е. расстояния от точки $O$ до сторон угла действительно равны. Что и требовалось доказать.:)

2. Если расстояния равны, то точка лежит на биссектрисе

Теперь обратная ситуация. Пусть дан угол $O$ и точка $M$, равноудалённая от сторон этого угла:

Докажем, что луч $OM$ — биссектриса, т.е. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$.

Доказательство. Для начала проведём этот самый луч $OM$, иначе доказывать будет нечего:

Провели луч $OM$ внутри угла

Снова получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. Очевидно, что они равны, поскольку:

  1. Гипотенуза $OM$ — общая;
  2. Катеты $M{{H}_{1}}=M{{H}_{2}}$ по условию (ведь точка $M$ равноудалена от сторон угла);
  3. Оставшиеся катеты тоже равны, т.к. по теореме Пифагора $OH_{1}^{2}=OH_{2}^{2}=O{{M}^{2}}-MH_{1}^{2}$.

Следовательно, треугольники $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$ по трём сторонам. В частности, равны их углы: $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$. А это как раз и означает, что $OM$ — биссектриса.

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Биссектриса разбила угол $\angle {{H}_{1}}O{{H}_{2}}$ на два равных

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»