Kvadratne jednadžbe 8. Definicija i primjeri nepotpunih kvadratnih jednadžbi

Pretplatite se
Pridružite se zajednici parkvak.ru!
U kontaktu sa:

Kopyevskaya ruralna srednja škola

10 načina za rješavanje kvadratnih jednačina

Rukovodilac: Patrikeeva Galina Anatolyevna,

nastavnik matematike

selo Kopevo, 2007

1. Istorija razvoja kvadratnih jednačina

1.1 Kvadratne jednadžbe u starom Babilonu

1.2 Kako je Diofant sastavio i riješio kvadratne jednačine

1.3 Kvadratne jednadžbe u Indiji

1.4 Kvadratne jednadžbe od al-Khorezmija

1.5 Kvadratne jednačine u Evropi XIII - XVII vijeka

1.6 O Vietinoj teoremi

2. Metode rješavanja kvadratnih jednačina

Zaključak

Književnost

1. Istorija razvoja kvadratnih jednačina

1.1 Kvadratne jednadžbe u starom Babilonu

Potreba za rješavanjem jednačina ne samo prvog, već i drugog stepena, još u antičko doba bila je uzrokovana potrebom rješavanja problema vezanih za pronalaženje površina zemljišnih parcela i iskopnih radova vojnog karaktera, kao i kao i sa razvojem same astronomije i matematike. Kvadratne jednačine su se mogle riješiti oko 2000. godine prije Krista. e. Babilonci.

Koristeći modernu algebarsku notaciju, možemo reći da u njihovim klinastim tekstovima, osim nepotpunih, postoje i, na primjer, potpune kvadratne jednadžbe:

X 2 + X = ¾; X 2 - X = 14,5

Pravilo za rješavanje ovih jednačina, postavljeno u babilonskim tekstovima, u suštini se poklapa sa savremenim, ali nije poznato kako su Babilonci došli do ovog pravila. Gotovo svi do sada pronađeni klinopisni tekstovi daju samo probleme s rješenjima izloženim u obliku recepata, bez naznaka kako su pronađeni.

Uprkos visokom nivou razvoja algebre u Babilonu, klinastim tekstovima nedostaje koncept negativnog broja i opšte metode za rešavanje kvadratnih jednačina.

1.2 Kako je Diofant sastavio i riješio kvadratne jednačine.

Diofantova aritmetika ne sadrži sistematski prikaz algebre, ali sadrži sistematski niz zadataka, praćenih objašnjenjima i rešavanih konstruisanjem jednačina različitih stepena.

Prilikom sastavljanja jednačina, Diofant vješto bira nepoznanice kako bi pojednostavio rješenje.

Evo, na primjer, jednog od njegovih zadataka.

Problem 11.“Pronađi dva broja, znajući da je njihov zbir 20, a proizvod 96”

Diofant obrazlaže ovako: iz uslova zadatka proizilazi da traženi brojevi nisu jednaki, jer da su jednaki, onda njihov proizvod ne bi bio jednak 96, već 100. Dakle, jedan od njih će biti veći od polovina njihove sume, tj. 10 + x, drugi je manji, tj. 10's. Razlika između njih 2x .

Otuda jednačina:

(10 + x)(10 - x) = 96

100 - x 2 = 96

x 2 - 4 = 0 (1)

Odavde x = 2. Jedan od traženih brojeva je jednak 12 , ostalo 8 . Rješenje x = -2 jer Diofant ne postoji, pošto je grčka matematika poznavala samo pozitivne brojeve.

Ako ovaj problem riješimo odabirom jednog od traženih brojeva kao nepoznatog, doći ćemo do rješenja jednačine

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Jasno je da biranjem polurazlike traženih brojeva kao nepoznate, Diofant pojednostavljuje rješenje; on uspijeva svesti problem na rješavanje nepotpune kvadratne jednadžbe (1).

1.3 Kvadratne jednadžbe u Indiji

Problemi o kvadratnim jednačinama nalaze se već u astronomskoj raspravi „Arijabhattiam“, koju je 499. godine sastavio indijski matematičar i astronom Aryabhatta. Drugi indijski naučnik, Brahmagupta (7. vek), izložio je opšte pravilo za rešavanje kvadratnih jednačina svedenih na jedan kanonski oblik:

ah 2+ b x = c, a > 0. (1)

U jednačini (1), koeficijenti, osim A, također može biti negativan. Brahmaguptino pravilo je u suštini isto kao i naše.

U staroj Indiji javna takmičenja u rješavanju teških problema bila su uobičajena. U jednoj od starih indijskih knjiga o takvim takmičenjima stoji sljedeće: „Kao što sunce obasjava zvijezde svojim sjajem, tako će učen čovjek nadmašiti slavu drugoga na javnim skupovima, predlažući i rješavajući algebarske probleme. Problemi su često predstavljani u poetskom obliku.

Ovo je jedan od problema poznatog indijskog matematičara iz 12. veka. Bhaskars.

Problem 13.

„Jato žustrih majmuna, i dvanaest duž vinove loze...

Vlasti su se, pojevši, zabavile. Počeli su skakati, vješati se...

Ima ih na trgu, dio 8. Koliko je majmuna bilo?

Zabavljao sam se na čistini. Reci mi, u ovom paketu?

Bhaskarino rješenje pokazuje da je znao da su korijeni kvadratnih jednadžbi dvovrijedni (slika 3).

Jednačina koja odgovara problemu 13 je:

( x /8) 2 + 12 = x

Bhaskara piše pod maskom:

x 2 - 64x = -768

i, da bi se lijeva strana ove jednadžbe dovršila na kvadrat, dodaje obje strane 32 2 , a zatim dobijate:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Kvadratne jednadžbe u al - Khorezmi

U algebarskoj raspravi al-Khorezmija data je klasifikacija linearnih i kvadratnih jednadžbi. Autor broji 6 vrsta jednačina, izražavajući ih na sljedeći način:

1) „Kvadrati su jednaki korijenima“, tj. ax 2 + c = b X.

2) „Kvadrati su jednaki brojevima“, tj. sjekira 2 = c.

3) “Korijeni su jednaki broju”, tj. ah = s.

4) „Kvadrati i brojevi su jednaki korijenima“, tj. ax 2 + c = b X.

5) „Kvadrati i korijeni su jednaki brojevima“, tj. ah 2+ bx = s.

6) „Korijeni i brojevi su jednaki kvadratima“, tj. bx + c = ax 2 .

Za al-Khorezmija, koji je izbjegao upotrebu negativnih brojeva, članovi svake od ovih jednačina su sabirci, a ne oduzimajući. U ovom slučaju se očito ne uzimaju u obzir jednačine koje nemaju pozitivna rješenja. Autor postavlja metode za rješavanje ovih jednačina koristeći tehnike al-jabr i al-muqabala. Njegove odluke se, naravno, ne poklapaju u potpunosti s našim. Da ne spominjemo da je to čisto retoričko, treba napomenuti, na primjer, da prilikom rješavanja nepotpune kvadratne jednadžbe prvog tipa

al-Horezmi, kao i svi matematičari prije 17. stoljeća, ne uzima u obzir nulto rješenje, vjerovatno zato što u konkretnim praktičnim problemima ono nije bitno. Kada rješava potpune kvadratne jednadžbe, al-Khorezmi postavlja pravila za njihovo rješavanje koristeći određene numeričke primjere, a zatim i geometrijske dokaze.

Problem 14.“Kvadrat i broj 21 jednaki su 10 korijena. Pronađite korijen" (što podrazumijeva korijen jednačine x 2 + 21 = 10x).

Autorovo rješenje glasi otprilike ovako: podijelite broj korijena na pola, dobijete 5, pomnožite 5 sa sobom, oduzmete 21 od proizvoda, ostaje 4. Uzmite korijen iz 4, dobijete 2. Oduzmite 2 od 5 , dobijete 3, ovo će biti željeni korijen. Ili dodajte 2 do 5, što daje 7, ovo je također korijen.

Traktat Al-Khorezmi je prva knjiga koja je došla do nas, a koja sistematski postavlja klasifikaciju kvadratnih jednačina i daje formule za njihovo rješavanje.

1.5 Kvadratne jednadžbe u Evropi XIII - XVII bb

Formule za rješavanje kvadratnih jednačina duž linija al-Khwarizmija u Evropi su prvi put izložene u Knjizi Abacus, koju je 1202. napisao italijanski matematičar Leonardo Fibonacci. Ovo obimno djelo, koje odražava utjecaj matematike, kako iz zemalja islama, tako i iz antičke Grčke, odlikuje se cjelovitošću i jasnoćom izlaganja. Autor je samostalno razvio neke nove algebarske primjere rješavanja problema i prvi u Europi pristupio uvođenju negativnih brojeva. Njegova knjiga je doprinijela širenju algebarskog znanja ne samo u Italiji, već iu Njemačkoj, Francuskoj i drugim evropskim zemljama. Mnogi problemi iz knjige Abacus korišćeni su u gotovo svim evropskim udžbenicima 16. - 17. veka. i dijelom XVIII.

Opće pravilo za rješavanje kvadratnih jednadžbi svedeno na jedan kanonski oblik:

x 2 + bx = c,

za sve moguće kombinacije predznaka koeficijenta b , With je u Evropi formulisao M. Stiefel tek 1544. godine.

Izvođenje formule za rješavanje kvadratne jednadžbe u općem obliku dostupno je od Viètea, ali Viète je prepoznao samo pozitivne korijene. Italijanski matematičari Tartaglia, Cardano, Bombelli bili su među prvima u 16. veku. Osim pozitivnih, u obzir se uzimaju i negativni korijeni. Tek u 17. veku. Zahvaljujući radovima Girarda, Descartesa, Newtona i drugih naučnika, metoda rješavanja kvadratnih jednačina poprima moderan oblik.

1.6 O Vietinoj teoremi

Teoremu koja izražava odnos između koeficijenata kvadratne jednadžbe i njenih korijena, nazvanu po Vieti, on je prvi put formulirao 1591. na sljedeći način: „Ako B + D, pomnoženo sa A - A 2 , jednako BD, To A jednaki IN i jednaki D ».

Da bismo razumjeli Vietu, trebamo to zapamtiti A, kao i svako samoglasničko slovo, značilo je nepoznato (naše X), samoglasnici IN, D- koeficijenti za nepoznato. U jeziku moderne algebre, gornja Vieta formulacija znači: ako postoji

(a + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Izražavajući odnos između korijena i koeficijenata jednačina općim formulama ispisanim pomoću simbola, Viète je uspostavio uniformnost u metodama rješavanja jednačina. Međutim, simbolika Vieta je još uvijek daleko od svog modernog oblika. Nije prepoznao negativne brojeve i stoga je prilikom rješavanja jednačina razmatrao samo slučajeve u kojima su svi korijeni bili pozitivni.

2. Metode rješavanja kvadratnih jednačina

Kvadratne jednadžbe su temelj na kojem počiva veličanstveno zdanje algebre. Kvadratne jednadžbe se široko koriste u rješavanju trigonometrijskih, eksponencijalnih, logaritamskih, iracionalnih i transcendentalnih jednadžbi i nejednačina. Svi znamo rješavati kvadratne jednačine od škole (8. razred) do mature.

Kvadratna jednadžba - lako riješiti! *U daljem tekstu “KU”. Prijatelji, čini se da u matematici ne može biti ništa jednostavnije od rješavanja takve jednačine. Ali nešto mi je govorilo da mnogi ljudi imaju problema s njim. Odlučio sam da vidim koliko utisaka na zahtjev Yandex daje mjesečno. Evo šta se desilo, pogledajte:


Šta to znači? To znači da oko 70.000 ljudi mjesečno traži ovu informaciju, a ovo je ljeto, a šta će biti tokom školske godine - zahtjeva će biti duplo više. To nije iznenađujuće, jer oni momci i djevojke koji su davno završili školu i spremaju se za Jedinstveni državni ispit traže ove informacije, a i školarci se trude da osvježe svoje pamćenje.

Uprkos činjenici da postoji mnogo sajtova koji vam govore kako da rešite ovu jednačinu, odlučio sam da dam svoj doprinos i objavim materijal. Prvo, želim da posjetitelji dolaze na moju stranicu na osnovu ovog zahtjeva; drugo, u drugim člancima, kada se pojavi tema “KU”, dat ću link do ovog članka; treće, reći ću vam nešto više o njegovom rješenju nego što se obično navodi na drugim stranicama. Hajde da počnemo! Sadržaj članka:

Kvadratna jednačina je jednačina oblika:

gdje su koeficijenti a,bi c su proizvoljni brojevi, sa a≠0.

U školskom kursu gradivo se daje u sledećem obliku - jednačine su podeljene u tri razreda:

1. Imaju dva korijena.

2. *Imajte samo jedan korijen.

3. Nemaju korijene. Ovdje je posebno vrijedno napomenuti da oni nemaju prave korijene

Kako se izračunavaju korijeni? Samo!

Izračunavamo diskriminanta. Ispod ove "strašne" riječi krije se vrlo jednostavna formula:

Formule korijena su sljedeće:

*Ove formule morate znati napamet.

Možete odmah zapisati i riješiti:

primjer:


1. Ako je D > 0, onda jednačina ima dva korijena.

2. Ako je D = 0, onda jednačina ima jedan korijen.

3. Ako D< 0, то уравнение не имеет действительных корней.

Pogledajmo jednačinu:


S tim u vezi, kada je diskriminanta jednaka nuli, školski kurs kaže da se dobija jedan korijen, ovdje je jednak devet. Sve je tačno, tako je, ali...

Ova ideja je donekle netačna. U stvari, postoje dva korijena. Da, da, nemojte se iznenaditi, dobijate dva jednaka korijena, a da budemo matematički precizni, onda bi odgovor trebao pisati dva korijena:

x 1 = 3 x 2 = 3

Ali ovo je tako - mala digresija. U školi možete to zapisati i reći da postoji jedan korijen.

Sada sljedeći primjer:


Kao što znamo, korijen negativnog broja se ne može uzeti, tako da u ovom slučaju nema rješenja.

To je cijeli proces odlučivanja.

Kvadratna funkcija.

Ovo pokazuje kako rješenje izgleda geometrijski. Ovo je izuzetno važno razumjeti (u budućnosti ćemo u jednom od članaka detaljno analizirati rješenje kvadratne nejednakosti).

Ovo je funkcija oblika:

gdje su x i y varijable

a, b, c – dati brojevi, sa a ≠ 0

Grafikon je parabola:

Odnosno, ispada da rješavanjem kvadratne jednadžbe sa “y” jednakom nuli, nalazimo točke presjeka parabole sa x osom. Mogu postojati dvije od ovih tačaka (diskriminanta je pozitivna), jedna (diskriminanta je nula) i nijedna (diskriminanta je negativna). Detalji o kvadratnoj funkciji Možete pogledatičlanak Inna Feldman.

Pogledajmo primjere:

Primjer 1: Riješi 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Odgovor: x 1 = 8 x 2 = –12

*Moguće je odmah podijeliti lijevu i desnu stranu jednačine sa 2, odnosno pojednostaviti je. Proračun će biti lakši.

Primjer 2: Odlučite se x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Otkrili smo da je x 1 = 11 i x 2 = 11

U odgovoru je dozvoljeno napisati x = 11.

Odgovor: x = 11

Primjer 3: Odlučite se x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant je negativan, nema rješenja u realnim brojevima.

Odgovor: nema rješenja

Diskriminant je negativan. Postoji rješenje!

Ovdje ćemo govoriti o rješavanju jednadžbe u slučaju kada se dobije negativan diskriminant. Znate li išta o kompleksnim brojevima? Ovdje neću ulaziti u detalje zašto i gdje su nastali i koja je njihova specifična uloga i neophodnost u matematici; ovo je tema za veliki poseban članak.

Koncept kompleksnog broja.

Malo teorije.

Kompleksni broj z je broj oblika

z = a + bi

gdje su a i b realni brojevi, i je takozvana imaginarna jedinica.

a+bi – ovo je JEDAN BROJ, a ne dodatak.

Imaginarna jedinica jednaka je korijenu minus jedan:

Sada razmotrite jednačinu:


Dobijamo dva konjugirana korijena.

Nepotpuna kvadratna jednadžba.

Razmotrimo posebne slučajeve, to je kada je koeficijent “b” ili “c” jednak nuli (ili su oba jednaka nuli). Oni se mogu lako riješiti bez ikakvih diskriminanata.

Slučaj 1. Koeficijent b = 0.

Jednačina postaje:

Pretvorimo:

primjer:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Slučaj 2. Koeficijent c = 0.

Jednačina postaje:

Hajde da transformišemo i faktorizujemo:

*Proizvod je jednak nuli kada je barem jedan od faktora jednak nuli.

primjer:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ili x–5 =0

x 1 = 0 x 2 = 5

Slučaj 3. Koeficijenti b = 0 i c = 0.

Ovdje je jasno da će rješenje jednadžbe uvijek biti x = 0.

Korisna svojstva i obrasci koeficijenata.

Postoje svojstva koja vam omogućavaju rješavanje jednadžbi s velikim koeficijentima.

Ax 2 + bx+ c=0 jednakost važi

a + b+ c = 0, To

- ako za koeficijente jednačine Ax 2 + bx+ c=0 jednakost važi

a+ s =b, To

Ova svojstva pomažu u rješavanju određene vrste jednadžbe.

Primjer 1: 5001 x 2 –4995 x – 6=0

Zbir kvota je 5001+( 4995)+( 6) = 0, što znači

Primjer 2: 2501 x 2 +2507 x+6=0

Jednakost važi a+ s =b, Sredstva

Pravilnosti koeficijenata.

1. Ako je u jednačini ax 2 + bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Primjer. Razmotrimo jednačinu 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Ako je u jednačini ax 2 – bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ako u jednadžbi ax 2 + bx – c = 0 koeficijent “b” je jednako (a 2 – 1), i koeficijent “c” je numerički jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Ako je u jednačini ax 2 – bx – c = 0 koeficijent “b” jednak (a 2 – 1), a koeficijent c brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Primjer. Razmotrimo jednačinu 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietin teorem.

Vietina teorema je dobila ime po poznatom francuskom matematičaru Francois Vieti. Koristeći Vietin teorem, možemo izraziti zbir i proizvod korijena proizvoljnog KU u terminima njegovih koeficijenata.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Ukupno, broj 14 daje samo 5 i 9. Ovo su korijeni. Uz određenu vještinu, koristeći prikazanu teoremu, možete odmah usmeno riješiti mnoge kvadratne jednadžbe.

Osim toga, Vietin teorem. Pogodno je po tome što se nakon rješavanja kvadratne jednadžbe na uobičajen način (preko diskriminanta) mogu provjeriti rezultirajući korijeni. Preporučujem da to radite uvijek.

NAČIN TRANSPORTA

Ovom metodom koeficijent “a” se množi slobodnim pojmom, kao da mu je “bačen”, zbog čega se naziva metoda "transfera". Ova metoda se koristi kada se korijeni jednadžbe mogu lako pronaći pomoću Vietine teoreme i, što je najvažnije, kada je diskriminanta tačan kvadrat.

Ako A± b+c≠ 0, tada se koristi tehnika prijenosa, na primjer:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Koristeći Vietinu teoremu u jednačini (2), lako je odrediti da je x 1 = 10 x 2 = 1

Rezultirajući korijeni jednadžbe moraju se podijeliti sa 2 (budući da su dva "izbačena" iz x 2), dobijamo

x 1 = 5 x 2 = 0,5.

Šta je obrazloženje? Pogledaj šta se dešava.

Diskriminante jednačina (1) i (2) su jednake:

Ako pogledate korijene jednadžbi, dobit ćete samo različite nazivnike, a rezultat ovisi upravo o koeficijentu x 2:


Drugi (modificirani) ima korijene koji su 2 puta veći.

Stoga, rezultat dijelimo sa 2.

*Ako prebacimo trojku, rezultat ćemo podijeliti sa 3, itd.

Odgovor: x 1 = 5 x 2 = 0,5

Sq. ur-ie i Jedinstveni državni ispit.

Reći ću vam ukratko o njegovoj važnosti - MORATE MOĆI DA ODLUČITE brzo i bez razmišljanja, morate znati formule korijena i diskriminanata napamet. Mnogi problemi uključeni u zadatke Jedinstvenog državnog ispita svode se na rješavanje kvadratne jednačine (uključujući i geometrijske).

Nešto vredno pažnje!

1. Oblik pisanja jednačine može biti „implicitan“. Na primjer, moguć je sljedeći unos:

15+ 9x 2 - 45x = 0 ili 15x+42+9x 2 - 45x=0 ili 15 -5x+10x 2 = 0.

Morate ga dovesti u standardni oblik (da se ne zbunite prilikom rješavanja).

2. Zapamtite da je x nepoznata veličina i može se označiti bilo kojim drugim slovom - t, q, p, h i drugim.

Kvadratne jednadžbe se često pojavljuju prilikom rješavanja različitih problema iz fizike i matematike. U ovom članku ćemo pogledati kako riješiti ove jednakosti na univerzalan način „preko diskriminanta“. U članku su dati i primjeri korištenja stečenog znanja.

O kojim jednačinama ćemo govoriti?

Na slici ispod prikazana je formula u kojoj je x nepoznata varijabla, a latinski simboli a, b, c predstavljaju neke poznate brojeve.

Svaki od ovih simbola naziva se koeficijent. Kao što vidite, broj "a" se pojavljuje ispred varijable x na kvadrat. Ovo je maksimalna snaga predstavljenog izraza, zbog čega se naziva kvadratna jednačina. Često se koristi i njen drugi naziv: jednačina drugog reda. Sama vrijednost a je kvadratni koeficijent (koji stoji s promjenljivom na kvadrat), b je linearni koeficijent (nalazi se pored varijable podignute na prvi stepen), i konačno, broj c je slobodni član.

Imajte na umu da je tip jednadžbe prikazan na gornjoj slici opći klasični kvadratni izraz. Pored nje, postoje i druge jednačine drugog reda u kojima koeficijenti b i c mogu biti nula.

Kada se postavi zadatak za rješavanje predmetne jednakosti, to znači da je potrebno pronaći takve vrijednosti varijable x koje bi je zadovoljile. Ovdje prva stvar koju trebate zapamtiti je sljedeća stvar: pošto je maksimalni stepen X 2, onda ova vrsta izraza ne može imati više od 2 rješenja. To znači da ako se prilikom rješavanja jednadžbe nađu 2 vrijednosti x koje ga zadovoljavaju, onda možete biti sigurni da ne postoji treći broj, zamjenjujući ga za x, jednakost bi također bila istinita. Rješenja jednadžbe u matematici nazivaju se njezinim korijenima.

Metode rješavanja jednačina drugog reda

Rješavanje jednadžbi ovog tipa zahtijeva poznavanje neke teorije o njima. U školskom kursu algebre razmatraju se 4 različite metode rješavanja. Nabrojimo ih:

  • korištenje faktorizacije;
  • korištenje formule za savršen kvadrat;
  • primjenom grafa odgovarajuće kvadratne funkcije;
  • koristeći diskriminantnu jednačinu.

Prednost prve metode je njena jednostavnost, međutim, ne može se koristiti za sve jednadžbe. Druga metoda je univerzalna, ali pomalo glomazna. Treća metoda se odlikuje jasnoćom, ali nije uvijek prikladna i primjenjiva. I konačno, korištenje diskriminantne jednadžbe je univerzalan i prilično jednostavan način za pronalaženje korijena apsolutno bilo koje jednačine drugog reda. Stoga ćemo u ovom članku razmotriti samo to.

Formula za dobivanje korijena jednadžbe

Okrenimo se opštem obliku kvadratne jednačine. Zapišimo to: a*x²+ b*x + c =0. Prije korištenja metode rješavanja „preko diskriminanta“, uvijek treba jednakost dovesti u njenu pisanu formu. To jest, mora se sastojati od tri člana (ili manje ako je b ili c 0).

Na primjer, ako postoji izraz: x²-9*x+8 = -5*x+7*x², tada biste prvo trebali premjestiti sve njegove članove na jednu stranu jednakosti i dodati članove koji sadrže varijablu x u iste ovlasti.

U ovom slučaju, ova operacija će dovesti do sljedećeg izraza: -6*x²-4*x+8=0, što je ekvivalentno jednačini 6*x²+4*x-8=0 (ovdje smo pomnožili lijevo i desne strane jednakosti sa -1) .


U gornjem primjeru, a = 6, b=4, c=-8. Imajte na umu da se svi članovi razmatrane jednakosti uvijek zbrajaju, pa ako se pojavi znak “-”, to znači da je odgovarajući koeficijent negativan, kao u ovom slučaju broj c.


Nakon što smo ispitali ovu tačku, prijeđimo sada na samu formulu, koja omogućava dobivanje korijena kvadratne jednadžbe. Izgleda kao na slici ispod.


Kao što se može vidjeti iz ovog izraza, on vam omogućava da dobijete dva korijena (obratite pažnju na znak "±"). Da biste to učinili, dovoljno je u njega zamijeniti koeficijente b, c i a.

Koncept diskriminatora

U prethodnom pasusu data je formula koja vam omogućava brzo rješavanje bilo koje jednačine drugog reda. U njemu se radikalni izraz naziva diskriminantom, odnosno D = b²-4*a*c.

Zašto je ovaj dio formule istaknut i zašto uopće ima svoje ime? Činjenica je da diskriminanta povezuje sva tri koeficijenta jednačine u jedan izraz. Posljednja činjenica znači da u potpunosti nosi informacije o korijenima, što se može izraziti u sljedećoj listi:

  1. D>0: Jednakost ima 2 različita rješenja, od kojih su oba realni brojevi.
  2. D=0: Jednačina ima samo jedan korijen, i to je realan broj.

Zadatak diskriminantnog određivanja


Dajemo jednostavan primjer kako pronaći diskriminant. Neka je data sljedeća jednakost: 2*x² - 4+5*x-9*x² = 3*x-5*x²+7.

Dovedemo to u standardni oblik, dobijamo: (2*x²-9*x²+5*x²) + (5*x-3*x) + (- 4-7) = 0, iz čega dolazimo do jednakosti : -2*x² +2*x-11 = 0. Ovdje je a=-2, b=2, c=-11.

Sada možete koristiti gornju formulu za diskriminanta: D = 2² - 4*(-2)*(-11) = -84. Dobiveni broj je odgovor na zadatak. Budući da je diskriminant u primjeru manji od nule, možemo reći da ova kvadratna jednadžba nema pravi korijen. Njegovo rješenje će biti samo brojevi složenog tipa.

Primjer nejednakosti kroz diskriminant

Hajde da riješimo probleme malo drugačijeg tipa: dat je jednakost -3*x²-6*x+c = 0. Potrebno je pronaći vrijednosti c za koje je D>0.

U ovom slučaju su poznata samo 2 od 3 koeficijenta, tako da nije moguće izračunati tačnu vrijednost diskriminanta, ali se zna da je ona pozitivna. Zadnju činjenicu koristimo pri sastavljanju nejednakosti: D= (-6)²-4*(-3)*c>0 => 36+12*c>0. Rješavanje rezultirajuće nejednakosti dovodi do rezultata: c>-3.

Provjerimo rezultirajući broj. Da bismo to učinili, izračunavamo D za 2 slučaja: c=-2 i c=-4. Broj -2 zadovoljava dobijeni rezultat (-2>-3), odgovarajući diskriminant će imati vrijednost: D = 12>0. Zauzvrat, broj -4 ne zadovoljava nejednakost (-4. Dakle, svi brojevi c koji su veći od -3 će zadovoljiti uslov.

Primjer rješavanja jednadžbe

Predstavimo problem koji uključuje ne samo pronalaženje diskriminanta, već i rješavanje jednačine. Potrebno je pronaći korijene za jednakost -2*x²+7-9*x = 0.

U ovom primjeru diskriminanta je jednaka sljedećoj vrijednosti: D = 81-4*(-2)*7= 137. Tada se korijeni jednačine određuju na sljedeći način: x = (9±√137)/(- 4). Ovo su tačne vrijednosti korijena; ako približno izračunate korijen, onda ćete dobiti brojeve: x = -5,176 i x = 0,676.

Geometrijski problem

Hajde da riješimo problem koji će zahtijevati ne samo sposobnost izračunavanja diskriminanta, već i korištenje vještina apstraktnog razmišljanja i znanja o tome kako napisati kvadratne jednačine.

Bob je imao jorgan 5 x 4 metra. Dječak je želio da na njega prišije neprekidnu traku lijepe tkanine po cijelom perimetru. Koliko će ova traka biti debela ako znamo da Bob ima 10 m² tkanine.


Neka traka ima debljinu od x m, tada će površina tkanine duž dugačke strane pokrivača biti (5+2*x)*x, a pošto postoje 2 dugačke strane, imamo: 2*x *(5+2*x). Na kratkoj strani, površina ušivenog platna će biti 4*x, pošto postoje 2 ove strane, dobijamo vrijednost 8*x. Imajte na umu da je vrijednost 2*x dodana dugoj strani jer se dužina pokrivača povećala za taj broj. Ukupna površina tkanine ušivene na ćebe je 10 m². Dakle, dobijamo jednakost: 2*x*(5+2*x) + 8*x = 10 => 4*x²+18*x-10 = 0.

Za ovaj primjer, diskriminanta je jednaka: D = 18²-4*4*(-10) = 484. Njegov korijen je 22. Koristeći formulu, nalazimo tražene korijene: x = (-18±22)/( 2*4) = (- 5; 0,5). Očigledno je da je od dva korijena samo broj 0,5 prikladan prema uslovima problema.

Tako će traka tkanine koju Bob prišije na svoje ćebe biti široka 50 cm.

U modernom društvu, sposobnost izvođenja operacija sa jednadžbama koje sadrže kvadratnu varijablu može biti korisna u mnogim područjima aktivnosti i široko se koristi u praksi u naučnom i tehničkom razvoju. Dokaz za to se može naći u dizajnu morskih i riječnih plovila, zrakoplova i projektila. Koristeći takve proračune, određuju se putanje kretanja velikog broja tijela, uključujući svemirske objekte. Primjeri sa rješenjem kvadratnih jednadžbi koriste se ne samo u ekonomskom predviđanju, u projektovanju i izgradnji zgrada, već iu najobičnijim svakodnevnim okolnostima. Mogu biti potrebni na planinarenju, na sportskim događajima, u trgovinama prilikom kupovine iu drugim vrlo čestim situacijama.

Podijelimo izraz na njegove sastavne faktore

Stepen jednačine je određen maksimalnom vrijednošću stepena varijable koju izraz sadrži. Ako je jednako 2, onda se takva jednadžba naziva kvadratnom.

Ako govorimo jezikom formula, onda se navedeni izrazi, ma kako izgledali, uvijek mogu dovesti u oblik kada se lijeva strana izraza sastoji od tri pojma. Među njima: ax 2 (tj. varijabla na kvadratu sa svojim koeficijentom), bx (nepoznata bez kvadrata sa svojim koeficijentom) i c (slobodna komponenta, odnosno običan broj). Sve ovo na desnoj strani jednako je 0. U slučaju kada takvom polinomu nedostaje jedan od njegovih sastavnih članova, sa izuzetkom ose 2, naziva se nepotpuna kvadratna jednačina. Prvo treba razmotriti primjere s rješavanjem takvih problema, vrijednosti varijabli u kojima je lako pronaći.

Ako izraz izgleda kao da ima dva člana na desnoj strani, tačnije ax 2 i bx, najlakši način da pronađete x je stavljanjem varijable iz zagrada. Sada će naša jednadžba izgledati ovako: x(ax+b). Zatim, postaje očigledno da je ili x=0, ili se problem svodi na pronalaženje varijable iz sljedećeg izraza: ax+b=0. Ovo je diktirano jednim od svojstava množenja. Pravilo kaže da proizvod dva faktora rezultira 0 samo ako je jedan od njih nula.

Primjer

x=0 ili 8x - 3 = 0

Kao rezultat, dobijamo dva korijena jednadžbe: 0 i 0,375.

Jednačine ove vrste mogu opisati kretanje tijela pod uticajem gravitacije, koja su se počela kretati iz određene tačke uzete kao ishodište koordinata. Ovdje matematička notacija poprima sljedeći oblik: y = v 0 t + gt 2 /2. Zamjenom potrebnih vrijednosti, izjednačavanjem desne strane sa 0 i pronalaženjem mogućih nepoznanica, možete saznati vrijeme koje prolazi od trenutka kada se tijelo diže do trenutka kada pada, kao i mnoge druge veličine. Ali o tome ćemo kasnije.

Faktoriranje izraza

Gore opisano pravilo omogućava rješavanje ovih problema u složenijim slučajevima. Pogledajmo primjere rješavanja kvadratnih jednadžbi ovog tipa.

X 2 - 33x + 200 = 0

Ovaj kvadratni trinom je potpun. Prvo, transformirajmo izraz i činimo ga faktorima. Ima ih dva: (x-8) i (x-25) = 0. Kao rezultat, imamo dva korijena 8 i 25.

Primjeri rješavanja kvadratnih jednadžbi u 9. razredu omogućavaju ovoj metodi da pronađe varijablu u izrazima ne samo drugog, već čak i trećeg i četvrtog reda.

Na primjer: 2x 3 + 2x 2 - 18x - 18 = 0. Kada se desna strana rastavlja na faktore s promjenljivom, postoje tri od njih, odnosno (x+1), (x-3) i (x+ 3).

Kao rezultat, postaje očigledno da ova jednadžba ima tri korijena: -3; -1; 3.

Kvadratni korijen

Drugi slučaj nepotpune jednačine drugog reda je izraz predstavljen jezikom slova na način da je desna strana konstruisana od komponenti ax 2 i c. Ovdje, da bi se dobila vrijednost varijable, slobodni član se prenosi na desnu stranu, a nakon toga se iz obje strane jednakosti izdvaja kvadratni korijen. Treba napomenuti da u ovom slučaju obično postoje dva korijena jednačine. Jedini izuzetak mogu biti jednakosti koje uopće ne sadrže pojam s, gdje je varijabla jednaka nuli, kao i varijante izraza kada se desna strana pokaže kao negativna. U potonjem slučaju uopće nema rješenja, jer se gore navedene radnje ne mogu izvesti s korijenima. Treba razmotriti primjere rješenja kvadratnih jednačina ovog tipa.

U ovom slučaju, korijeni jednadžbe će biti brojevi -4 i 4.

Proračun površine zemljišta

Potreba za ovakvim proračunima pojavila se još u antičko doba, jer je razvoj matematike u tim dalekim vremenima u velikoj mjeri bio određen potrebom da se s najvećom preciznošću odrede površine i perimetri zemljišnih parcela.

Trebalo bi razmotriti i primjere rješavanja kvadratnih jednačina zasnovanih na problemima ove vrste.

Dakle, recimo da postoji pravougaona parcela čija je dužina 16 metara veća od širine. Trebali biste pronaći dužinu, širinu i obim lokacije ako znate da je njegova površina 612 m2.

Za početak, krenimo prvo potrebnu jednačinu. Označimo sa x širinu površine, tada će njena dužina biti (x+16). Iz napisanog proizilazi da je površina određena izrazom x(x+16), koji je, prema uslovima našeg zadatka, 612. To znači da je x(x+16) = 612.

Rješavanje kompletnih kvadratnih jednadžbi, a ovaj izraz je upravo to, ne može se raditi na isti način. Zašto? Iako lijeva strana još uvijek sadrži dva faktora, njihov proizvod uopće nije jednak 0, pa se ovdje koriste različite metode.

Diskriminantno

Prije svega, izvršit ćemo potrebne transformacije, a onda će izgled ovog izraza izgledati ovako: x 2 + 16x - 612 = 0. To znači da smo primili izraz u obliku koji odgovara prethodno navedenom standardu, gdje a=1, b=16, c= -612.

Ovo bi mogao biti primjer rješavanja kvadratnih jednadžbi pomoću diskriminanta. Ovdje se vrše potrebni proračuni prema šemi: D = b 2 - 4ac. Ova pomoćna veličina ne samo da omogućava pronalaženje traženih količina u jednačini drugog reda, već određuje i broj mogućih opcija. Ako je D>0, postoje dva; za D=0 postoji jedan korijen. U slučaju D<0, никаких шансов для решения у уравнения вообще не имеется.

O korijenima i njihovoj formuli

U našem slučaju, diskriminanta je jednaka: 256 - 4(-612) = 2704. Ovo sugerira da naš problem ima odgovor. Ako znate k, rješavanje kvadratnih jednadžbi mora se nastaviti pomoću formule u nastavku. Omogućava vam izračunavanje korijena.

To znači da je u prikazanom slučaju: x 1 =18, x 2 =-34. Druga opcija u ovoj dilemi ne može biti rešenje, jer se dimenzije parcele ne mogu meriti u negativnim veličinama, što znači da je x (odnosno širina parcele) 18 m. Odavde računamo dužinu: 18 +16=34, a obod 2(34+18)=104(m2).

Primjeri i zadaci

Nastavljamo naše proučavanje kvadratnih jednadžbi. Primjeri i detaljna rješenja nekoliko njih bit će dati u nastavku.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Premjestimo sve na lijevu stranu jednakosti, izvršimo transformaciju, odnosno dobićemo onu vrstu jednačine koja se obično naziva standardnom i izjednačiti je sa nulom.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Sabiranjem sličnih odredimo diskriminanta: D = 49 - 48 = 1. To znači da će naša jednadžba imati dva korijena. Izračunajmo ih prema gornjoj formuli, što znači da će prvi od njih biti jednak 4/3, a drugi 1.

2) A sada da riješimo misterije druge vrste.

Hajde da saznamo ima li ovdje korijena x 2 - 4x + 5 = 1? Da bismo dobili sveobuhvatan odgovor, smanjimo polinom na odgovarajući uobičajeni oblik i izračunajmo diskriminant. U gornjem primjeru nije potrebno rješavati kvadratnu jednačinu, jer to uopće nije suština problema. U ovom slučaju, D = 16 - 20 = -4, što znači da zaista nema korijena.

Vietin teorem

Pogodno je rješavati kvadratne jednadžbe koristeći gornje formule i diskriminant, kada se iz vrijednosti potonjeg uzme kvadratni korijen. Ali to se ne dešava uvek. Međutim, u ovom slučaju postoji mnogo načina da se dobiju vrijednosti varijabli. Primjer: rješavanje kvadratnih jednadžbi pomoću Vietine teoreme. Ime je dobila po onom koji je živeo u 16. veku u Francuskoj i napravio briljantnu karijeru zahvaljujući njegovom matematičkom talentu i vezama na dvoru. Njegov portret se može vidjeti u članku.

Obrazac koji je slavni Francuz uočio bio je sljedeći. On je dokazao da se korijeni jednadžbe numerički sabiraju na -p=b/a, a njihov proizvod odgovara q=c/a.

Pogledajmo sada konkretne zadatke.

3x 2 + 21x - 54 = 0

Radi jednostavnosti, transformirajmo izraz:

x 2 + 7x - 18 = 0

Koristimo Vietin teorem, ovo će nam dati sljedeće: zbir korijena je -7, a njihov proizvod je -18. Odavde dobijamo da su korijeni jednadžbe brojevi -9 i 2. Nakon provjere, uvjerit ćemo se da se ove vrijednosti varijabli zaista uklapaju u izraz.

Parabola graf i jednadžba

Koncepti kvadratne funkcije i kvadratne jednadžbe su usko povezani. Primjeri za to su već navedeni ranije. Pogledajmo sada neke matematičke zagonetke malo detaljnije. Bilo koja jednačina opisanog tipa može se vizualno prikazati. Takav odnos, nacrtan kao graf, naziva se parabola. Njegove različite vrste prikazane su na donjoj slici.

Svaka parabola ima vrh, odnosno tačku iz koje izlaze njene grane. Ako je a>0, idu visoko do beskonačnosti, a kada je a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Vizuelni prikazi funkcija pomažu u rješavanju svih jednadžbi, uključujući one kvadratne. Ova metoda se naziva grafička. A vrijednost varijable x je koordinata apscise u tačkama gdje se linija grafikona seče sa 0x. Koordinate vrha se mogu pronaći pomoću formule koja je upravo data x 0 = -b/2a. I zamjenom rezultirajuće vrijednosti u originalnu jednadžbu funkcije, možete saznati y 0, odnosno drugu koordinatu vrha parabole, koja pripada osi ordinate.

Presjek grana parabole sa osom apscise

Postoji mnogo primjera rješavanja kvadratnih jednadžbi, ali postoje i opći obrasci. Pogledajmo ih. Jasno je da je presjek grafa sa 0x osom za a>0 moguć samo ako 0 ima negativne vrijednosti. I za a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Inače D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Iz grafa parabole možete odrediti i korijene. Vrijedi i suprotno. To jest, ako nije lako dobiti vizualni prikaz kvadratne funkcije, možete izjednačiti desnu stranu izraza sa 0 i riješiti rezultirajuću jednadžbu. A znajući tačke preseka sa 0x osom, lakše je konstruisati graf.

Iz istorije

Koristeći jednadžbe koje sadrže kvadratnu varijablu, u starim danima nisu samo pravili matematičke proračune i određivali površine geometrijskih figura. Drevnima su takvi proračuni bili potrebni za velika otkrića u oblastima fizike i astronomije, kao i za pravljenje astroloških prognoza.

Kao što sugerišu savremeni naučnici, stanovnici Babilona bili su među prvima koji su rešili kvadratne jednačine. To se dogodilo četiri veka pre naše ere. Naravno, njihovi proračuni su se radikalno razlikovali od onih koji su trenutno prihvaćeni i ispali su mnogo primitivniji. Na primjer, mesopotamski matematičari nisu imali pojma o postojanju negativnih brojeva. Nisu im bile poznate i druge suptilnosti koje zna svaki savremeni školarac.

Možda čak i ranije od babilonskih naučnika, mudrac iz Indije Baudhayama počeo je rješavati kvadratne jednačine. To se dogodilo oko osam vekova pre Hristove ere. Istina, jednačine drugog reda, metode za rješavanje koje je on dao, bile su najjednostavnije. Osim njega, za slična pitanja nekada su se zanimali i kineski matematičari. U Evropi su kvadratne jednačine počele da se rešavaju tek početkom 13. veka, ali su ih kasnije u svojim radovima koristili veliki naučnici kao što su Newton, Descartes i mnogi drugi.

Samo. Prema formulama i jasnim, jednostavnim pravilima. U prvoj fazi

potrebno je datu jednačinu dovesti u standardni oblik, tj. na obrazac:

Ako vam je jednačina već data u ovom obliku, ne morate raditi prvu fazu. Najvažnije je da to uradite kako treba

odrediti sve koeficijente, A, b I c.

Formula za pronalaženje korijena kvadratne jednadžbe.

Izraz pod znakom korijena se zove diskriminatorno . Kao što vidite, da bismo pronašli X, mi

koristimo samo a, b i c. One. koeficijenti iz kvadratna jednačina. Samo ga pažljivo ubacite

vrijednosti a, b i c Računamo u ovoj formuli. Zamjenjujemo sa njihov znakovi!

Na primjer, u jednadžbi:

A =1; b = 3; c = -4.

Zamjenjujemo vrijednosti i pišemo:

Primjer je skoro riješen:

Ovo je odgovor.

Najčešće greške su zabuna sa vrijednostima znakova a, b I With. Ili bolje rečeno, sa zamjenom

negativne vrijednosti u formulu za izračunavanje korijena. Ovdje u pomoć dolazi detaljan snimak formule

sa određenim brojevima. Ako imate problema sa proračunima, uradite to!

Pretpostavimo da trebamo riješiti sljedeći primjer:

Evo a = -6; b = -5; c = -1

Sve opisujemo detaljno, pažljivo, ne propuštajući ništa sa svim znakovima i zagradama:

Kvadratne jednadžbe često izgledaju malo drugačije. Na primjer, ovako:

Sada uzmite u obzir praktične tehnike koje dramatično smanjuju broj grešaka.

Prvi sastanak. Ne budi lijen prije rješavanje kvadratne jednačine dovesti ga u standardni oblik.

Šta to znači?

Recimo da nakon svih transformacija dobijete sljedeću jednačinu:

Nemojte žuriti s pisanjem korijenske formule! Gotovo sigurno ćete pomiješati šanse a, b i c.

Konstruirajte primjer ispravno. Prvo, X na kvadrat, zatim bez kvadrata, zatim slobodni član. Volim ovo:

Riješite se minusa. Kako? Moramo pomnožiti cijelu jednačinu sa -1. Dobijamo:

Ali sada možete sigurno zapisati formulu za korijene, izračunati diskriminanta i završiti rješavanje primjera.

Odlučite sami. Sada bi trebali imati korijene 2 i -1.

Prijem drugi. Provjerite korijene! By Vietin teorem.

Za rješavanje zadatih kvadratnih jednadžbi, tj. ako je koeficijent

x 2 +bx+c=0,

Ondax 1 x 2 =c

x 1 +x 2 =−b

Za potpunu kvadratnu jednačinu u kojoj a≠1:

x 2 +bx+c=0,

podijelite cijelu jednačinu sa O:

Gdje x 1 I x 2 - korijeni jednadžbe.

Prijem treći. Ako vaša jednadžba ima koeficijente razlomaka, riješite se razlomaka! Pomnožite

jednadžba sa zajedničkim nazivnikom.

Zaključak. Praktični savjeti:

1. Prije rješavanja, dovodimo kvadratnu jednačinu u standardni oblik i gradimo je U redu.

2. Ako postoji negativan koeficijent ispred X na kvadrat, eliminišemo ga množenjem svega

jednačine za -1.

3. Ako su koeficijenti razlomki, eliminiramo razlomke množenjem cijele jednačine odgovarajućim

faktor.

4. Ako je x na kvadrat čist, njegov koeficijent je jednak jedan, rješenje se lako može provjeriti pomoću

Povratak

×
Pridružite se zajednici parkvak.ru!
U kontaktu sa:
Već sam pretplaćen na zajednicu “parkvak.ru”