Золотое сечение простое объяснение. Божественная гармония: что такое золотое сечение простыми словами

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Золотое сечение – математика

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение – гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений:a: b = c: d.
Отрезок прямой АВ можно разделить на две части следующими способами:
на две равные части – АВ: АС = АВ: ВС;
на две неравные части в любом отношении (такие части пропорции не образуют);
таким образом, когда АВ: АС = АС: ВС.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a: b = b: c или с: b = b: а.

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618…, если АВ принять за единицу, ВЕ = 0,382… Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:
x2 – x – 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.
Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Еделит отрезок AD в отношении 56: 44.

Рис. 3. Построение второго золотого сечения

Рис. 4. Деление прямоугольника линией второго золотого сечения

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471…1528). Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.
Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Проводим прямую АВ. От точки Аоткладываем на ней три раза отрезок Опроизвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

Рис. 6. Построение золотого треугольника

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 7. Динамические прямоугольники

Платон (427…347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.
В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.
В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.
Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.
В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».
Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.
Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).
Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».
Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).
Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

Рис. 9. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Рис. 10. Золотые пропорции в частях тела человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.


Рис. 11. Золотые пропорции в фигуре человека

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618: 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16…

Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16… на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2…, во втором – это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2…. Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S , который может принимать любые значения: 0, 1, 2, 3, 4, 5… Рассмотрим числовой ряд, S + 1 первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n -й член этого ряда мы обозначим через φ S (n ), то получим общую формулу φ S (n ) = φ S (n – 1) + φ S (n S – 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 – ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили названиеS -чисел Фибоначчи.

В общем виде золотая S -пропорция есть положительный корень уравнения золотого S -сечения x S+1 – x S – 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 –знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотыхS-пропорций. Это позволило автору выдвинуть гипотезe о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики – новой области науки, изучающей процессы в самоорганизующихся системах.

С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S> 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения – числа рациональные. И лишь позже – после открытия пифагорийцами несоизмеримых отрезков – на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа – 10, 5, 2, – из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной – а не бесконечной, как думали ранее! – суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Принципы формообразования в природе

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.


Рис. 12. Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.


Рис. 13. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Рис. 15. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863…1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, какстатическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Золотое сечение – гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений: a: b = c: d.

Отрезок прямой АВ можно разделить на две части следующими способами:
на две равные части – АВ: АС = АВ: ВС;
на две неравные части в любом отношении (такие части пропорции не образуют);
таким образом, когда АВ: АС = АС: ВС.

Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a: b = b: c или с: b = b: а.

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:

x2 – x – 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор , древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей » посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах » Евклида . Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи , художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли , и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер . Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов.

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618: 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором – это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через φS (n), то получим общую формулу φS (n) = φS (n – 1) + φS (n – S – 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 – ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 – xS – 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 –знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S-пропорций. Это позволило автору выдвинуть гипотезe о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики – новой области науки, изучающей процессы в самоорганизующихся системах.

С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S > 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения – числа рациональные. И лишь позже – после открытия пифагорийцами несоизмеримых отрезков – на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа – 10, 5, 2, – из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной – а не бесконечной, как думали ранее! – суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Принципы формообразования в природе

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.


Рис. 13. Цикорий

Рис. 14. Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Рис. 15. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.
Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863...1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Источники информации:

Ковалев Ф.В. Золотое сечение в живописи. К.: Выща школа, 1989.
Кеплер И. О шестиугольных снежинках. – М., 1982.
Дюрер А. Дневники, письма, трактаты – Л., М., 1957.
Цеков-Карандаш Ц. О втором золотом сечении. – София, 1983.
Стахов А. Коды золотой пропорции.

Смотрите также : Эрнст Нойферт. Строительное проектирование. Система измерений

20.05.2017

Золотое сечение – это то, о чем должен знать каждый дизайнер. Мы объясним, что это такое, и как вы можете его использовать.

Существует общее математическое соотношение, найденное в природе, которое может быть использовано в дизайне для создания приятных, натурально-выглядящих композиций. Его называют Золотым Сечением или греческой буквой “фи”. Если вы иллюстратор, арт директор или графический дизайнер, вам определенно стоит использовать Золотое Сечение в каждом проекте.

В этой статье мы объясним, как его использовать, а также поделимся несколькими отличными инструментами для дальнейшего вдохновения и изучения.

Тесно связанная с Последовательностью Фибоначи (Fibonacci Sequence), которую вы, возможно, помните из уроков математики или романа Дэна Брауна “Код Да Винчи”, Золотое Сечение описывает идеально симметричное взаимоотношение между двумя пропорциями.

Приблизительно равное соотношению 1: 1.61, Золотое Сечение может быть иллюститровано как Золотой Прямоугольник: большой прямоугольник, включающий квадрат (в котором стороны равны длине самой короткой стороны прямоугольника) и прямоугольник поменьше.

Если убрать квадрат из прямоугольника, останется другой, маленький Золотой Прямоугольник. Этот процесс может продолжаться до бесконечности, как и цифры Фибоначи, которые работают в обратном порядке. (Добавление квадрата со сторонами, равными длине самой длинной стороны прямоугольника, приближает вас к Золотому Прямоугольнику и Золотому Сечению.)

Золотое Сечение в действии

Считается, что Золотое Сечение используется уже около 4000 лет в искусстве и дизайне. Однако, многие люди соглашаются, что при строительстве Египетских Пирамид также использовался этот принцип.

В более современные времена это правило может быть замечено в музыке, искусстве и дизайне вокруг нас. Применяя аналогичную рабочую методологию, вы можете привнести в свою работу те же особенности дизайна. Давайте взглянем на несколько вдохновляющих примеров.

Греческая архитектура

В древнегреческой архитектуре Золотое Сечение использовалось для определения приятных пространственных отношений между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих структуру.

В результате получается идеально пропорциональное строение. Движение неоклассической архитектуры также использовало эти принципы.

Тайная вечеря

Леонардо Да Винчи, как и многие другие художники прошлых лет, часто использовал Золотое Сечение для создания приятных композиций.

В Тайной вечере фигуры расположены в нижних двух третях (самая большая из двух частей Золотого Сечения), а Иисус идеально зарисован между золотых прямоугольников.

Золотое сечение в природе

Существует множество примеров Золотого Сечения в природе – их вы можете обнаружить вокруг себя. Цветы, морские раковины, ананасы и даже пчелиные соты демонстрируют одинаковое соотношение.

Как рассчитать Золотое Сечение

Рассчет Золотого Сечения достаточно прост, и начинается с простого квадрата:

01. Нарисуйте квадрат

Он образует длину короткой стороны прямоугольника.

02. Разделите квадрат

Разделите квадрат пополам с помощью вертикальной линии, образуя два прямоугольника.

03. Проведите диагональ

В одном из прямоугольников проведиде линию из одного угла в противоположный.

04. Поверните

Поверните эту линию так, чтобы она легла горизонтально по отношению к первому прямоугольнику.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и первый прямоугольник.

Как использовать Золотое Сечение

Использовать этот принцип проще, чем вы думаете. Существует пара быстрых трюков, которые вы можете использовать в своих макетах, или потратить немного больше времени и полностью раскрыть концепт.

Быстрый способ

Если вы когда-нибудь сталкивались с “Правилом третей”, то вам будет знакома идея разделения пространства на равные трети по вертикали и горизонтали, при этом места пересечения линий создают естественные точки для объектов.

Фотограф размещает ключевой объект на одной из этих пересекающихся линий, чтобы создать приятную композицию. Этот прицип может также использоваться в вашей разметке страниц и дизайне постеров.

Правило третей можно применять к любой форме, но если вы примените его к прямоугольнику с пропорциями примерно 1: 1.6, вы окажетесь очень близко к золотому прямоугольнику, что сделает композицию более приятной для глаз.

Полная реализация

Если вы хотите реализовать Золотое Сечение в вашем дизайне в полной мере, то просто расположите основной контент и сайдбар (в веб дизайне) в соотношении равном 1: 1.61.

Можно округлить значения в меньшую или большую стороны: если контент-зона равна 640px, а сайдбар 400px, то эта разметка вполне подойдет под Золотое Сечение.

Разумеется, вы также можете разделить области контента и боковой панели на одно и то же отношение, а связь между заголовком веб-страницы, областью содержимого, футером и навигацией также может быть спроектирована с использованием того же приципа.

Полезные инструменты

Вот несколько инструментов, которые помогут вам в использовании Золотого Сечения в дизайне и создании пропорциональных проектов.

GoldenRATIO – это приложение для создания дизайна веб сайтов, интерфейсов и шаблонов, подходящих под Золотое Сечение. Доступно в Mac App Store за 2,99$. Включает визуальный калькулятор Золотого Сечения.

Так же в приложении есть функция “Избранное”, которое сохраняет настройки для повторяющихся задач и “Click-thru” мод, позволяющий сворачивать приложение в Photoshop.

Этот калькулятор Золотого Сечения от Pearsonified помогает в создании идеальной типографики для вашего сайта. Введите размер шрифта, ширину контейнера в поле, и нажмите кнопку Set my type! Если вам нужно оптимизировать количество букв в строчке, вы можете дополнительно ввести значение CPL.

Это простое, полезное и бесплатное приложение доступно для Mac и PC. Введите любое число, и приложение вычислит вторую цифру в соответствии с приципом Золотого Сечения.

Это приложение позволяет проектировать с золотыми пропорциями, экономя кучу времени на вычислениях.

Вы можете менять формы и размеры, фокусируясь на работе над своим проектом. Постоянная лицензия стоит 49$, но вы можете скачать бесплатную версию на месяц.

Обучение Золтому Сечению

Вот несколько полезных туториалов по Золотому Сечению (английский язык):

В этом туториале для Digital Arts Роберто Маррас (Roberto Marras) показывает, как использовать Золотое Сечение в художественной работе.

Туториал от Tuts+, рассказывающий, как использовать золотые принципы в веб дизайн проектах.

Туториал от Smashing Magazine, рассказывающий о пропорциях и правиле третей.

Аэрография основывается на тех же "столпах", что и другие виды искусства.

Весь наш мир можно описать числами. Многие числа играют настолько значительную роль в этом описании, что имеют собственные имена: Пи, экспанента (е) и т.д. Среди этих "именных" чисел есть весьма замечательное. Математики, художники, архитекторы в разные времена называли его «золотое число», «божественное число», «божественное сечение». Термин «золотое сечение» придумал Клавдий Птолемей, а популярным он стал благодаря Леонардо Да Винчи , который широко использовал его в своих работах. Люди искусства заметили, что пропорции форм, которые особенно приятны глазу для восприятия, в основе своей имеют «золотое сечение».

Так что же это за число? Золотым сечением называется число Фи (Phi) равное 1,61803. Число названо в честь великого древнегреческого скульптора Фидия (Phidius), который использовал его в своих скульптурах. Как наглядно продемонстрировать принцип «золотого сечения»? Приведем простой пример. Если построить прямоугольник, одна сторона которого в 1,618 раз длиннее другой, то полученное соотношение сторон и представляет собой «золотое сечение». Самые распространенные «золотые прямоугольники» в современном мире - это кредитные карты. Человеческое тело считается красивым, а его пропорции - идеальными, если соотношение между меньшей и большей частью тела равно соотношению между большей частью и целым, то есть равно числу Фи.

***
Известнейшим математическим сочинением античной науки являются «Начала» Евклида. Именно из «Начал» к нам пришла геометрическая задача «о делении отрезка в крайнем и среднем отношении». Что и является самим «Золотым сечением».
Суть задачи такова:
Разделим отрезок АВ точкой С в таком отношении, чтобы большая часть отрезка СВ так относилась к меньшей части отрезка АС, как отрезок АВ к своей большей части СВ, т. е.

Обозначим пропорцию (1.1) через х. Тогда, учитывая, что АВ = АС + СВ, пропорцию (1.1) можно записать в следующем виде:

Откуда вытекает следующее алгебраическое уравнение для вычисления искомой пропорции х:

х* = х + 1. (1.2)
x* - в квадрате

Из «физического смысла» пропорции (1.1) вытекает, что искомое решение уравнения (1.2) должно быть положительным числом, откуда вытекает, что решением задачи о делении отрезка в крайнем и среднем отношении является положительный корень уравнения (1.2), который мы обозначим через , то есть


Приближенное значение золотой пропорции равно:
= 1,61803 39887 49894 84820 45868 34365 63811 77203…

ЗОЛОТЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

На основе вышеизложенных пропорций в геометрии определены такие понятия золотых геометрических фигур:
- золотой прямоугольник (в котором отношение большей стороны к меньшей равно золотой пропорции);
- золотой прямоугольный треугольник;
- золотой эллипс;
- золотой равнобедренный треугольник.



Прямоугольный треугольник со сторонами 3:4:5 называется «совершенным», «священным» или «египетским».
Создатели египетских пирамид выбрали в качестве «главной геометрической идеи» для пирамиды Хеопса - золотой прямоугольный треугольник, а для пирамиды Хефрена – «священный» треугольник.

Пентагон («pentagonon» - греч.), правильный пятиугольник. Если в пентагоне провести все диагонали, то в результате мы получим пятиугольную звезду, называемую пентаграммой («pentagrammon» - греч.: «pente» - пять и «grammon» - линия) или пентаклом.

Пентаграмма, называемая в народных поверьях «ведьминой стопой», играла большую роль во всех магических науках и рассматривалась как средство защиты от злых духов.
Каждые восемь лет планета Венера описывает абсолютно правильный пентакл по большому кругу небесной сферы.
Здание «Пентагона», военного ведомства США имеет форму пентагона.

Пентагон и пентакл включают в себя ряд замечательных фигур, которые широко использовались в произведениях искусства. В античном искусстве широко известен так называемый закон золотой чаши, которые использовали античные скульпторы и золотых дел мастера. Заштрихованная часть пентагона дает схематическое представление золотой чаши.

Когда-то в Советском Союзе существовал Государственный знак качества, в котором явно просматриваются мотивы золотой чаши.

В живой природе широко распространены формы, основанные на пентагональной симметрии – морские звезды, морские ежи, цветы..

ГАРМОНИЯ ЗОЛОТОГО СЕЧЕНИЯ
(краткий обзор истории искусства)

Эталоном красоты человеческого тела, образцом гармонического телосложения издав-на и по праву считаются великие творения греческих скульпторов: Фидия, Поликтета, Мирона, Праксителя. В своих творениях греческие мастера использовали принцип золотой пропорции. Одним из высших достижений классического греческого искусства может служить статуя Дорифора, изваянная Поликтетом в V веке до н. э. Эта статуя считается наилучшим примером для анализа пропорций идеального человеческого тела, установленных античными греческими скульпторами, и напрямую связана с Золотым сечение. М=0,618…
Венера Милосская, статуя богини Афродиты и эталон женской красоты, является од-ним из лучших памятников греческого скульптурного искусства.

Леонардо Да Винчи использовал пропорции Золотого сечения во многих своих самых знаменитых произведениях, и в частности, в «Тайной вечере» и знаменитой «Джоконде».
Исследователи картины «Джоконда» обнаружили, что композиционное построение кар-тины основано на двух золотых треугольниках, повернутых друг к другу своими основаниями. Гармонический анализ картины показывает, что зрачок левого глаза, через который проходит вертикальная ось полотна, находится на пересечении двух биссектрис верхнего золотого треугольника, которые с одной стороны, делят пополам углы при основании золотого треугольника, а с другой стороны, в точках пересечения с бедрами золотого треугольника делят их в пропорции Золотого сечения. Таким образом, Леонардо Да Винчи использовал в своей картине не только принцип симметрии, но и Золотое сечение.

Картина «Святое семейство» Микеланджело признана одним из шедевров западноевропейского искусства эпохи Возрождения. Гармонический анализ показал, что композиция картины основана на пентакле.

Пропорции статуи Давида (работы Микеланджело) основаны на Золотом сечении.

Яркий пример архитектуры барокко, Смольный собор в Санкт-Петербурге, производит неизгладимое впечатление. В его основных пропорциях так же усматривается Золотое сечение.

На знаменитой картине Ивана Шишкина «Корабельная роща» просматриваются мотивы Золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит картину Золотым сечением по горизонтали. Справа от сосны – освещенный солнцем при-горок. Он делит картину Золотым сечением по вертикали. Слева от главной сосны находится много сосен – можно продолжить деление Золотым сечением по горизонтали левой части картины. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении Золотого сечения, придает ей характер уравновешенности и спокойствия.


Строительство штаб-квартиры ООН в Нью-Йорке было завершено в 1943 году. Здание привлекло тогда всеобщее внимание не только как общественное сооружение, созданное с применением новейших архитектурных средств, но и как первый пример использования сплошного солнцемодулирущего экрана на одном из фасадов. В этом здании также просматриваются мотивы Золотого сечения. В композиции здания четко выделяются три поставленных друг на друга золотых прямоугольника, которые и являются его главной архитектурной идеей.

Любое музыкальное произведение имеет временное протяжение и делится некоторыми «эстетическими вехами» на отдельные части, которые обращают на себя внимание и облегчают восприятие в целом. Этими вехами могут быть динамические и интонационные кульминационные пункты музыкального произведения. Отдельные временные интервалы музыкального произведения, соединяемые «кульминационным событием», как правило, находятся в соотношении Золотого сечения. В музыкальных произведениях различных композиторов обычно констатируется не одно Золотое сечение, а целая серия подобных сечений. Наибольшее количество произведений, в которых имеется Золоте сечение, у Аренского (95%), Бетховена (97%), Гайдна (97%), Моцарта (91%), Скрябина (90%), Шопена (92%), Шуберта (91%).

Если музыка – гармоническое упорядочение звуков, то поэзия – гармоническое упорядочение речи. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Золотое сечение в поэзии в первую очередь проявляется как наличие определенного момента стихотворения (кульминации, смыслового перелома, главной мысли произведения) в строке, приходящейся на точку деления общего числа строк стихотворения в золотой пропорции. Так, если стихотворение содержит 100 строк, то первая точка Золотого сечения приходится на 62-ю строку (62%), вторая – на 38-ю (38%) и т. д. Произведения Александра Сергеевича Пушкина, и в том числе «Евгений Онегин» - тончайшее соответствие золотой пропорции! Произведения Шота Руставели и М.Ю. Лермонтова также построены по принципу Золотого сечения.

Один из современных видов искусства – кинематограф, - вобравший в себя драматургию действия, живопись, музыку. В выдающихся произведениях киноискусства право-мерно искать проявления Золотого сечения. Первым это сделал создатель шедевра мирового кино «Броненосец «Потемкин» кинорежиссер Сергей Эйзенштейн. В построении этой картины он сумел воплотить основной принцип гармонии – Золотое сечение. Как отмечает сам Эйзенштейн, красный флаг на мачте восставшего броненосца (точка апогея фильма) взвивается в точке золотой пропорции, отсчитываемой от конца фильма.

В течение многих тысячелетий Золотое сечение было объектом восхищения и поклонения выдающихся ученых и мыслителей: Пифагора, Платона, Евклида, Луки Пачоли, Иоганна Кеплера, Павла Флоренского…
В настоящее время Золотое сечение оказывается источником новых плодотворных идей в математике и теоретической физике, биологии и ботанике, экономике и компьютерной науке…

Материал сформирован по книге «Код да Винчи и ряды Фибоначчи» А. Стахова, А. Слученковой, И. Щербакова, 2007 года выпуска, издательства «Питер».

Золотое сечение – это простой принцип, который поможет сделать дизайн приятным для визуального восприятия. В этой статье мы подробно расскажем как и зачем его использовать.

Распространенная в природе математическая пропорция, называемая Золотое сечение, или Золотая середина, основана на Последовательности Фибоначчи (о которой вы, скорее всего, слышали в школе, или читали в книге Дэна Брауна «Код да Винчи»), и подразумевает под собой соотношение сторон 1:1,61.

Такое соотношение сплошь и рядом встречается в нашей жизни (ракушки, ананасы, цветы и т.д.) и поэтому воспринимается человеком как нечто естественное, приятное взгляду.

→ Золотое сечение это взаимосвязь между двумя числами в последовательности Фибоначчи
→ Построение этой последовательности в масштабе дает спирали, которые можно увидеть в природе.

Считается, что Золотое сечение используется человечеством в искусстве и дизайне уже более 4 тысяч лет, а возможно даже больше, если верить ученым, которые утверждают, что древние Египтяне использовали этот принцип при строительстве пирамид.

Знаменитые примеры

Как мы уже говорили, Золотое сечение можно видеть на протяжении всей истории искусства и архитектуры. Вот некоторые примеры, которые только подтверждают обоснованность использования этого принципа:

Архитектура: Парфенон

В древнегреческой архитектуре Золотое сечение использовалось для вычисления идеальной пропорции между высотой и шириной здания, размеров портика, и даже расстояния между колоннами. В дальнейшем, этот принцип был унаследован архитектурой неоклассицизма.

Искусство: Тайная вечеря

Для художников композиция – основа основ. Леонардо да Винчи, как и многие другие художники, руководствовался принципом Золотого сечения: в Тайной Вечере, к примеру, фигуры учеников расположены в нижних двух третях (большее из двух частей Золотого сечения), а Иисус помещен строго по центру между двумя прямоугольниками.

Веб-дизайн: редизайн Twitter в 2010

Креативный директор Twitter Дуг Боуман (Doug Bowman) опубликовал скриншот в своем аккаунте Flickr, объясняя использование принципа Золотого сечения для редизайна 2010 года. «Все, кто интересуется #NewTwitter пропорциями – знайте, все сделано не просто так», сказал он.

Apple iCloud

Иконка сервиса iCloud тоже совсем не случайный набросок. Как объяснил Такамаса Мацумото в своем блоге (оригинальная японская версия ) все построено на математике Золотого сечения, анатомию которого можно увидеть на рисунке справа.

Как построить Золотое сечение?

Построение происходит довольно просто, и начинается с основного квадрата:

Нарисуйте квадрат. Это сформирует длину “короткой стороны” прямоугольника.

Разделите квадрат пополам вертикальной линией так, чтобы получились два прямоугольника.

В одном прямоугольнике нарисуйте линию, объединив противоположные углы.

Разверните эту линию горизонтально так, как это показано на рисунке.

Создайте еще один прямоугольник, используя горизонтальную линию, которую вы рисовали в предыдущих шагах как основу. Готово!

«Золотые» инструменты

Если чертить и вымерять не ваше любимое занятие, предоставьте всю «черную работу» инструментам, которые разработаны специально для этого. С помощью представленных ниже 4-х редакторов вы легко найдете Золотое сечение!

Приложение GoldenRATIO помогает разрабатывать веб-сайты, интерфейсы и макеты в соответствии с Золотым Сечением. Оно доступно в Mac App Store за $ 2,99, и имеет встроенный калькулятор с визуальной обратной связью, и удобную функцию «Избранное», в которой хранятся настройки для повторяющихся задач. Совместимо с Adobe Photoshop.

Этот калькулятор, который поможет вам создать идеальную типографику для сайта в соответствии с принципами Золотой пропорции. Просто введите размер шрифта, ширину содержимого в поле на сайте, и нажмите «Set my type»!

Это простое и бесплатное приложение для Mac и PC. Просто введите число, и он рассчитает для него пропорцию в соответствии с правилом Золотого сечения.

Удобная программа, которая избавит вас от необходимости расчетов и рисования сеток. С ней найти идеальные пропорции проще простого! Работает со всеми графическими редакторами, в том числе и Photoshop. Несмотря на то, что инструмент платный – 49$, есть возможность протестировать пробную версию в течение 30 дней.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»