Задания с параметром егэ модуль. Задачи с параметром из егэ прошлых лет

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Доклад на ГМО учителя математики МБОУ СОШ №9

Молчановой Елены Владимировны

«Подготовка к ЕГЭ по математике: задачи с параметрами ».

Поскольку в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение . Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

Что означает «решить задачу с параметром»?

Естественно, это зависит от вопроса в задаче. Если, например, требуется решить уравнение, неравенство, их систему или совокупность, то это означает предъявить обоснованный ответ либо для любого значения параметра, либо для значения параметра, принадлежащего заранее оговоренному множеству.

Если же требуется найти значения параметра, при которых множество решений уравнения, неравенства и т. д. удовлетворяет объявленному условию, то, очевидно, решение задачи и состоит в поиске указанных значений параметра.

Более прозрачное понимание того, что означает решить задачу с параметром, у читателя сформируется после ознакомления с примерами решения задач на последующих страницах.

Какие основные типы задач с параметрами?

Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

Обращаю внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых:

1) уравнение выполняется для любого значения переменной из заданного промежутка;
2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

Наиболее массовый класс задач с параметром - задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

Каковы основные способы (методы) решения задач с параметром?

Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

Комментарий. Аналитический способ решения задач с параметром есть самый трудный способ, требующий высокой грамотности и наибольших усилий по овладению им.

Способ II (графический). В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a ).

Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

Перейду теперь к демонстрации указанных способов решения задач с параметром, так как это мой любимый метод решения заданий данного типа.

Проанализировав все задания с параметрами, решаемыми графическим методом, я знакомство с параметрами начинаю с заданий ЕГЭ В7 2002 года:

При каком целом значении к уравнение 45х – 3х 2 – х 3 + 3к = 0 имеет ровно два корня?

Эти задания позволяют, во первых, вспомнить как строить графики с использованием производной, а во-вторых, объяснить смысл прямой у = к.

На последующих занятиях я пользуюсь подборкой легких и средних по уровню конкурсных задач с параметрами для подготовки к ЕГЭ, уравнений с модулем. Эти задания можно рекомендовать учителям по математике в качестве стартового комплекта упражнений для обучения работе с параметром, заключенным под знак модуля. Большинство номеров решаются графическим способом и предоставляют учителю готовый план урока (или двух уроков) с сильным учеником. Начальная подготовка к ЕГЭ по математике на упражнениях, близких по сложности к реальным номерам С5. Многие из предложенных заданий взяты из материалов для подготовки к ЕГЭ 2009 года, а некоторые – из интернета из опыта коллег.

1) Укажите все значения параметра p , при которых уравнение имеет 4 корня?
Ответ:

2) При каких значениях параметра а уравнение не имеет решений?
Ответ:

3) Найдите все значения а, при каждом из которых уравнение имеет ровно 3 корня?
Ответ: а=2

4) При каких значениях параметра b уравнение имеет единственное решение? Ответ:

5) Найдите все значения m , при которых уравнение не имеет решений.
Ответ:

6) Найдите все значения а, при которых уравнение имеет ровно 3 различных корня. (Если значений а более одного, то в ответе запишите их сумму.)

Ответ: 3

7) При каких значениях b уравнение имеет ровно 2 решения?
Ответ:

8) Укажите такие параметры k , при которых уравнение имеет не менее двух решений.
Ответ:

9) При каких значениях параметра p уравнение имеет только одно решение?
Ответ:

10) Найдите все значения а, при каждом из которых уравнение (х + 1) имеет ровно 2 корня? Если значений а окажется несколько, то в ответ запишите их сумму.

Ответ: - 3

11) Найдите все значения а, при которых уравнение имеет ровно 3 корня? (Если значений а более одного, то в ответ запишите их сумму).

Ответ: 4

12) При каком наменьшем натуральном значении параметра а уравнение = 11 имеет только положительные корни?

Ответ: 19

13) Найдите все значения а, при каждом из которых уравнение = 1 имеет ровно 3 корня? (Если значений а более одного, то в ответе запишите их сумму).

Ответ:- 3

14) Укажите такие значения параметра t , при которых уравнение имеет 4 различных решения. Ответ:

15) Найдите такие параметры m , при которых уравнение имеет два различных решения. Ответ:

16) При каких значениях параметра p уравнение имеет ровно 3 экстремума? Ответ:

17) Укажите все возможные параметры n, при которых функция имеет ровно одну точку минимума. Ответ:

Опубликованный комплект регулярно используется мной для работы со способным, но не самым сильным учеником, претендующим, тем не менее, на высокий балл ЕГЭ за счет решения номера С5. Подготовку такого ученика учитель проводит в несколько этапов, выделяя для тренировки отдельных навыков, необходимых для поиска и реализации длинных решений, отдельные уроки. Эта подборка подходит для стадии формирования представлений о плавающих рисунках в зависимости от параметра. Номера 16 и 17 составлены по образцу реального уравнения с параметром на ЕГЭ 2011г. Задачи выстроены в порядок возрастания их сложности.

Задание C5 по математике ЕГЭ 2012

Здесь мы имеем традиционную задачу с параметром, требующую умеренного владения материалом и применения нескольких свойств и теорем. Это задание является одним из самых сложных заданий Единого государственного экзамена по математике. Оно рассчитано, прежде всего, на тех, кто собирается продолжать образование в вузах с повышенными требованиями к математической подготовке абитуриентов. Для успешного решения задачи важно свободно оперировать изученными определениями, свойствами, теоремами, применять их в различных ситуациях, анализировать условие и находить возможные пути решения.

На сайте подготовки к ЕГЭ Александра Ларина с 11.05.2012 года были предложены тренировочные варианты №1 – 22 с заданиями уровня «С», С5 некоторых из них были аналогичны тем заданиям, которые были на реальном экзамене. Например, найдите все значения параметра а, при каждом из которых графики функций f (х) = и g (х) = а(х + 5) + 2 не имеют общих точек?

Разберем решение задания С5 из экзамена 2012 года.

Задание С5 из ЕГЭ-2012

При каких значениях параметра a уравнение имеет не менее двух корней.

Решим эту задачу графически. Построим график левой части уравнения: и график правой части: и сформулируем вопрос задачи так: при каких значениях параметра a графики функций и имеют две или более общих точки.

В левой части исходного уравнения параметр отсутствует, поэтому мы можем построить график функции .

Будем строить это график с помощью функции :

1. Сдвинем график функции на 3 единицы вниз вдоль оси OY, получим график функции :

2. Построим график функции . Для этого часть графика функции , расположенную ниже оси ОХ, отобразим симметрично относительно этой оси:

Итак, график функции имеет вид:

График функции

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О }

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»