Второй замечательный пример. Замечательные пределы: Первый и второй замечательный предел

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:

$ \bigg[\frac{\infty}{\infty}\bigg]^\infty $ и $ ^\infty $.

Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.

Формула и следствия

Формула второго замечательного предела записывается следующим образом: $$ \lim_{x \to \infty} \bigg (1+\frac{1}{x}\bigg)^x = e, \text{ где } e \approx 2.718 $$

Из формулы вытекают следствия , которые очень удобно применять для решения примеров с пределами: $$ \lim_{x \to \infty} \bigg (1 + \frac{k}{x} \bigg)^x = e^k, \text{ где } k \in \mathbb{R} $$ $$ \lim_{x \to \infty} \bigg (1 + \frac{1}{f(x)} \bigg)^{f(x)} = e $$ $$ \lim_{x \to 0} \bigg (1 + x \bigg)^\frac{1}{x} = e $$

Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.

Примеры решений

Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.

Пример 1
Найти предел $ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} $
Решение

Подставим бесконечность в предел и посмотрим на неопределенность: $$ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} = \bigg(\frac{\infty}{\infty}\bigg)^\infty $$

Найдем предел основания: $$ \lim_{x\to\infty} \frac{x+4}{x+3}= \lim_{x\to\infty} \frac{x(1+\frac{4}{x})}{x(1+\frac{3}{x})} = 1 $$

Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:

$$ \lim_{x\to\infty} \bigg(1 + \frac{x+4}{x+3} - 1 \bigg)^{x+3} = \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = $$

Смотрим на второе следствие и записываем ответ:

$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$
Пример 4
Решить предел $ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} $
Решение

Находим предел основания и видим, что $ \lim_{x\to\infty} \frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени:

$$ \lim_{x\to \infty} \bigg (1+\frac{3x^2+4}{3x^2-2}-1 \bigg) ^{3x} = \lim_{x\to \infty} \bigg (1+\frac{6}{3x^2-2} \bigg) ^{3x} = $$

Подгоняем дробь под формулу 2-го замеч. предела:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{3x} = $$

Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ \frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{\frac{3x^2-2}{6} \cdot \frac{6}{3x^2-2}\cdot 3x} = \lim_{x\to \infty} e^{\frac{18x}{3x^2-2}} = $$

Предел, расположенный в степени при $ e $ равен: $ \lim_{x\to \infty} \frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем:

Ответ
$$ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} = 1 $$

Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.

В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.

Формула второго замечательного предела имеет вид lim x → ∞ 1 + 1 x x = e . Другая форма записи выглядит так: lim x → 0 (1 + x) 1 x = e .

Когда мы говорим о втором замечательном пределе, то нам приходится иметь дело с неопределенностью вида 1 ∞ , т.е. единицей в бесконечной степени.

Yandex.RTB R-A-339285-1

Рассмотрим задачи, в которых нам пригодится умение вычислять второй замечательный предел.

Пример 1

Найдите предел lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 .

Решение

Подставим нужную формулу и выполним вычисления.

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 - 2 ∞ 2 + 1 ∞ 2 + 1 4 = 1 - 0 ∞ = 1 ∞

У нас в ответе получилась единица в степени бесконечность. Чтобы определиться с методом решения, используем таблицу неопределенностей. Выберем второй замечательный предел и произведем замену переменных.

t = - x 2 + 1 2 ⇔ x 2 + 1 4 = - t 2

Если x → ∞ , тогда t → - ∞ .

Посмотрим, что у нас получилось после замены:

lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = 1 ∞ = lim x → ∞ 1 + 1 t - 1 2 t = lim t → ∞ 1 + 1 t t - 1 2 = e - 1 2

Ответ: lim x → ∞ 1 - 2 x 2 + 1 x 2 + 1 4 = e - 1 2 .

Пример 2

Вычислите предел lim x → ∞ x - 1 x + 1 x .

Решение

Подставим бесконечность и получим следующее.

lim x → ∞ x - 1 x + 1 x = lim x → ∞ 1 - 1 x 1 + 1 x x = 1 - 0 1 + 0 ∞ = 1 ∞

В ответе у нас опять получилось то же самое, что и в предыдущей задаче, следовательно, мы можем опять воспользоваться вторым замечательным пределом. Далее нам нужно выделить в основании степенной функции целую часть:

x - 1 x + 1 = x + 1 - 2 x + 1 = x + 1 x + 1 - 2 x + 1 = 1 - 2 x + 1

После этого предел приобретает следующий вид:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x

Заменяем переменные. Допустим, что t = - x + 1 2 ⇒ 2 t = - x - 1 ⇒ x = - 2 t - 1 ; если x → ∞ , то t → ∞ .

После этого записываем, что у нас получилось в исходном пределе:

lim x → ∞ x - 1 x + 1 x = 1 ∞ = lim x → ∞ 1 - 2 x + 1 x = lim x → ∞ 1 + 1 t - 2 t - 1 = = lim x → ∞ 1 + 1 t - 2 t · 1 + 1 t - 1 = lim x → ∞ 1 + 1 t - 2 t · lim x → ∞ 1 + 1 t - 1 = = lim x → ∞ 1 + 1 t t - 2 · 1 + 1 ∞ = e - 2 · (1 + 0) - 1 = e - 2

Чтобы выполнить данное преобразование, мы использовали основные свойства пределов и степеней.

Ответ: lim x → ∞ x - 1 x + 1 x = e - 2 .

Пример 3

Вычислите предел lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 .

Решение

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + 1 x 3 1 + 2 x - 1 x 3 3 2 x - 5 x 4 = = 1 + 0 1 + 0 - 0 3 0 - 0 = 1 ∞

После этого нам нужно выполнить преобразование функции для применения второго замечательного предела. У нас получилось следующее:

lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = 1 ∞ = lim x → ∞ x 3 - 2 x 2 - 1 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5

Поскольку сейчас у нас есть одинаковые показатели степени в числителе и знаменателе дроби (равные шести), то предел дроби на бесконечности будет равен отношению данных коэффициентов при старших степенях.

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 2 x 2 + 2 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 6 2 = lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3

При замене t = x 2 + 2 x 2 - 1 - 2 x 2 + 2 у нас получится второй замечательный предел. Значит, что:

lim x → ∞ 1 + - 2 x 2 + 2 x 3 + 2 x 2 - 1 x 3 + 2 x 2 - 1 - 2 x 2 + 2 - 3 = lim x → ∞ 1 + 1 t t - 3 = e - 3

Ответ: lim x → ∞ x 3 + 1 x 3 + 2 x 2 - 1 3 x 4 2 x 3 - 5 = e - 3 .

Выводы

Неопределенность 1 ∞ , т.е. единица в бесконечной степени, является степенной неопределенностью, следовательно, ее можно раскрыть, используя правила нахождения пределов показательно степенных функций.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В данной теме мы разберём те формулы, которые можно получить, используя второй замечательный предел (тема, посвящённая непосредственно второму замечательному пределу, находится ). Напомню две формулировки второго замечательного предела, которые понадобятся в этом разделе: $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$ и $\lim_{x\to\ 0}\left(1+x\right)^\frac{1}{x}=e$.

Обычно формулы я привожу без доказательств, но для данной страницы, полагаю, сделаю исключение. Дело в том, что доказательство следствий из второго замечательного предела содержит некоторые приёмы, которые бывают полезны при непосредственном решении задач. Ну, и, вообще говоря, желательно знать, как доказывается та или иная формула. Это позволяет лучше понимать её внутреннюю структуру, а также границы применимости. Но так как доказательства могут быть интересны не всем читателям, то скрою их под примечания, расположенные после каждого следствия.

Следствие №1

\begin{equation} \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=1\end{equation}

Доказательство следствия №1: показать\скрыть

Так как при $x\to 0$ имеем $\ln(1+x)\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости представим выражение $\frac{\ln(1+x)}{x}$ в таком виде: $\frac{1}{x}\cdot\ln(1+x)$. Теперь внесём множитель $\frac{1}{x}$ в степень выражения $(1+x)$ и применим второй замечательный предел:

$$ \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=\left| \frac{0}{0} \right|= \lim_{x\to\ 0} \left(\frac{1}{x}\cdot\ln(1+x)\right)=\lim_{x\to\ 0}\ln(1+x)^{\frac{1}{x}}=\ln e=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $\log_a t=\frac{\ln t}{\ln a}$, то $\log_a (1+x)=\frac{\ln(1+x)}{\ln a}$.

$$ \lim_{x\to\ 0} \frac{\log_a (1+x)}{x}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0}\frac{\ln(1+x)}{ x \ln a}=\frac{1}{\ln a}\lim_{x\to\ 0}\frac{\ln(1+x)}{ x}=\frac{1}{\ln a}\cdot 1=\frac{1}{\ln a}. $$

Следствие №2

\begin{equation} \lim_{x\to\ 0} \frac{e^x-1}{x}=1\end{equation}

Доказательство следствия №2: показать\скрыть

Так как при $x\to 0$ имеем $e^x-1\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости осуществим замену переменной, обозначив $t=e^x-1$. Так как $x\to 0$, то $t\to 0$. Далее, из формулы $t=e^x-1$ получим: $e^x=1+t$, $x=\ln(1+t)$.

$$ \lim_{x\to\ 0} \frac{e^x-1}{x}=\left| \frac{0}{0} \right|=\left | \begin{aligned} & t=e^x-1;\; t\to 0.\\ & x=\ln(1+t).\end {aligned} \right|= \lim_{t\to 0}\frac{t}{\ln(1+t)}=\lim_{t\to 0}\frac{1}{\frac{\ln(1+t)}{t}}=\frac{1}{1}=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $a^x=e^{x\ln a}$, то:

$$ \lim_{x\to\ 0} \frac{a^{x}-1}{x}=\left| \frac{0}{0} \right|=\lim_{x\to 0}\frac{e^{x\ln a}-1}{x}=\ln a\cdot \lim_{x\to 0}\frac{e^{x\ln a}-1}{x \ln a}=\ln a \cdot 1=\ln a. $$

Следствие №3

\begin{equation} \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}=\alpha \end{equation}

Доказательство следствия №3: показать\скрыть

Вновь мы имеем дело с неопределённостью вида $\frac{0}{0}$. Так как $(1+x)^\alpha=e^{\alpha\ln(1+x)}$, то получим:

$$ \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}= \left| \frac{0}{0} \right|= \lim_{x\to\ 0}\frac{e^{\alpha\ln(1+x)}-1}{x}= \lim_{x\to\ 0}\left(\frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \frac{\alpha\ln(1+x)}{x} \right)=\\ =\alpha\lim_{x\to\ 0} \frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \lim_{x\to\ 0}\frac{\ln(1+x)}{x}=\alpha\cdot 1\cdot 1=\alpha. $$

Пример №1

Вычислить предел $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}$.

Имеем неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости будем использовать формулу . Чтобы подогнать наш предел под данную формулу следует иметь в виду, что выражения в степени числа $e$ и в знаменателе должны совпадать. Иными словами, синусу в знаменателе не место. В знаменателе должно быть $9x$. Кроме того, при решении этого примера будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\left|\frac{0}{0} \right|=\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{9x}{\sin 5x} \right) =\frac{9}{5}\cdot\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{1}{\frac{\sin 5x}{5x}} \right)=\frac{9}{5}\cdot 1 \cdot 1=\frac{9}{5}. $$

Ответ : $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\frac{9}{5}$.

Пример №2

Вычислить предел $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}$.

Имеем неопределённость вида $\frac{0}{0}$ (напомню, что $\ln\cos 0=\ln 1=0$). Для раскрытия этой неопределённости будем использовать формулу . Для начала учтём, что $\cos x=1-2\sin^2 \frac{x}{2}$ (см. распечатку по тригонометрическим функциям). Теперь $\ln\cos x=\ln\left(1-2\sin^2 \frac{x}{2}\right)$, поэтому в знаменателе следует получить выражение $-2\sin^2 \frac{x}{2}$ (чтобы подогнать наш пример под формулу ). В дальнейшем решении будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0} \frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{x^2}= \lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\frac{-2\sin^2 \frac{x}{2}}{x^2} \right)=\\ =-\frac{1}{2}\lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \right)=-\frac{1}{2}\cdot 1\cdot 1^2=-\frac{1}{2}. $$

Ответ : $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=-\frac{1}{2}$.

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»