Корреляционный анализ: основное определение и сферы применения. Корреляционно-регрессионный анализ в Excel: инструкция выполнения

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

Корреляционный анализ является одним из наиболее широко используемых статистических методов, в частности и в рамках политической науки. При своей относительной простоте он может быть весьма полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимозависимостях только формируются. Умение работать с данной статистической техникой важно и в силу того, что она используется как составная часть более сложных, комплексных методов, в том числе факторного анализа, некоторых версий кластер-анализа и др.

Целью корреляционного анализа является измерение стати -

стической взаимозависимости между двумя или более переменными. В случае, если исследуется связь двух переменных, корреляционный анализ будет парным; если число переменных более двух - множественным.

Следует подчеркнуть, что переменные в корреляционном анализе как бы «равноправны» - они не делятся на зависимые и независимые (объясняемые и объясняющие). Мы рассматриваем именно взаимозависимость (взаимосвязь) переменных, а не влияние одной из них на другую.

Понятие «корреляционный анализ» фактически объединяет несколько методов анализа статистической связи. В фокусе нашего внимания будет находиться наиболее распространенный из них - метод Пирсона (Реагзоп) . Его применение ограничено следующими условиями:

Переменные должны быть измерены, как минимум, на интервальном уровне;

Связь между переменными должна носить линейный характер, т. е. фиксироваться прямой линией. При наличии нелинейной связи корреляционный анализ Пирсона, скорее всего, не даст ее адекватного отображения;

Анализируемые переменные должны быть распределены нормально (или, во всяком случае, приближаться к нормальному распределению).

Корреляционный анализ фиксирует две характеристики статистической взаимосвязи между переменными:

Направленность связи. Как уже говорилось, по направленности связь бывает прямая (положительная) и обратная (отрицательная);

Интенсивность (плотность, теснота) связи. Эта характеристика определяет наши возможности по предсказанию значений одной переменной на основании значений другой.

Чтобы более наглядно представить себе особенности корреляционного анализа, обратимся к примеру из сферы исследования электоральных процессов. Предположим, мы проводим сравнительный анализ электората двух политических партий либеральной ориентации - Союза правых сил и «Яблока». Наша задача - понять, существует ли общность электората СПС и «Яблока» в территориальном разрезе и насколько она значима. Для этого мы можем, например, взять данные электоральной статистики, характеризующие уровень поддержки этих партий, в разрезе данных избирательных комиссий субъектов Федерации. Проще говоря, мы смотрим на проценты, полученные СПС и «Яблоком» по регионам России. Ниже приводятся данные по выборам депутатов Государственной думы 1999 г. (количество регионов 88, поскольку выборы в Чеченской Республике не проводились) .

Переменные (%)

«Яблоко»

Республика Адыгея

Республика Алтай

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Ингушетия

Кабардино-Балкарская Республика

Республика Калмыкия

Карачаево-Черкесская Республика

Республика Карелия

Республика Коми

Республика Марий Эл

И т. д. (всего 88 случаев)

Таким образом, у нас есть две переменные - «поддержка СПС в 1999 г.» и «поддержка "Яблока" в 1999 г.», простейшим образом операционализированные через процент голосов, поданных за эти партии, от числа избирателей, принявших участие в голосовании на федеральных парламентских выборах 1999 г. В качестве случаев выступают соответствующие данные, обобщенные на уровне регионов РФ.

Далее, в нашем распоряжении есть методический прием, который является одним из основных в статистике, - геометрическое представление. Геометрическим представлением называют представление случая как точки в условном пространстве, формируемом «осями» - переменными. В нашем примере мы можем представить каждый регион как точку в двухмерном пространстве голосований за правые партии. Ось X формирует признак «поддержка СПС», ось У- «поддержка "Яблока"» (или наоборот; для корреляционного анализа это неважно в силу неразличения зависимых и независимых переменных). «Координатами» региона будут: по оси X - значение переменной «поддержка СПС» (процент, набранный в регионе данной партией); по оси У- значение переменной «поддержка "Яблока"». Так, Республика Адыгея будет иметь координаты (3,92; 4,63), Республика Алтай - (3,38; 5,4) и т. д. Осуществив геометрическое представление всех случаев, мы получаем диаграмму рассеяния, или корреляционное поле.

Даже сугубо визуальный анализ диаграммы рассеяния наводит на мысль, что совокупность точек можно расположить вдоль некоторой условной прямой, называемой линией регрессии. Математически линия регрессии строится методом наименьших квадратов (высчитывается такое положение линии, при котором сумма квадратов расстояний от наблюдаемых точек до прямой является минимальной).

Интенсивность связи будет зависеть от того, насколько тесно точки (случаи) расположены вдоль линии регрессии. В коэффициенте корреляции (обозначается г), который и является числовым результатом корреляционного анализа, плотность колеблется от 0 до 1. При этом чем ближе значение коэффициента к 1, тем плотнее связь; чем ближе значение к 0, тем связь слабее. Так, при г = 1 связь приобретает характер функциональной - все точки «ложатся» на одну прямую. При г = 0, фиксирующем полное отсутствие связи, построение линии регрессии становится невозможным. В нашем примере г = 0,62, что свидетельствует о наличии значимой статистической связи (подробнее об интерпретации коэффициента корреляции см. ниже).

Тип связи определяется наклоном линии регрессии. В коэффициенте корреляции существует всего два значения типа связи: обратная (знак «-») и прямая (отсутствие знака, так как знак «+» традиционно не записывается). В нашем примере связь прямая. Соответственно, итоговый результат анализа 0,62.

Сегодня коэффициент корреляции Пирсона можно легко подсчитать с помощью всех компьютерных пакетов программ статистического анализа (8Р88, 81аИ8Иса, N088 и др.) и даже в широко распространенной программе Ехсе1 (надстройка «анализ данных»). Настоятельно рекомендуем пользоваться профессиональными пакетами, так как они позволяют визуально оценить корреляционное поле.

Почему важна визуальная оценка геометрического представления данных? Во-первых, мы должны убедиться, что связь линейна по форме, а здесь самый простой и эффективный метод - именно зрительная оценка. Напомним, что в случае ярко выраженной нелинейности связи вычисление коэффициента корреляции окажется бесполезным. Во-вторых, визуальная оценка позволяет найти в данных выбросы, т. е. нетипичные, резко выделяющиеся случаи.

Вернемся к нашему примеру с двумя партиями. Внимательно глядя на диаграмму рассеяния, мы замечаем по меньшей мере один нетипичный случай, лежащий явно в стороне от «общей магистрали», тенденции связи переменных. Это точка, представляющая данные по Самарской области. Хотя и в меньшей степени, но тоже нетипично положение Томской, Нижегородской областей и Санкт-Петербурга.

Можно скорректировать данные анализа, удалив сильно отклоняющиеся наблюдения, т. е. произведя «чистку выбросов». В силу специфики вычисления линии регрессии, связанной с подсчетом суммы квадратов расстояний, даже единичный выброс может существенно исказить общую картину.

на массиве данных, взятых в территориальном разрезе. Логично предположить, что в основе этой связи лежит некий фактор или комплекс факторов, который мы пока непосредственно не учитывали. Исследуя данные электоральной статистики разного уровня, нетрудно заметить, что обе партии демонстрируют лучшие результаты в городах и худшие - в сельских районах. Мы можем выдвинуть гипотезу, что одним из факторов, опосредующих связь между переменными, является уровень урбанизации территорий. Этот признак проще всего опера-ционализировать через переменную «доля сельского населения» или «доля городского населения» . Такая статистика существует по каждому субъекту Федерации.

Теперь в наших исходных данных появляется третья переменная - пусть это будет «доля сельского населения» .

Удалив только один из 88 случаев - Самарскую область, - мы получим значение коэффициента корреляции, отличное от полученного ранее: 0,73 по сравнению с 0,62. Плотность связи усилилась более чем на 0,1 - это весьма и весьма существенно. Избавившись отточек, соответствующих Санкт-Петербургу, Томской и Нижегородской областям, получим еще более высокую плотность: 0,77.

Впрочем, чисткой выбросов не следует увлекаться: сокращая количество случаев, мы понижаем общий уровень статистического доверия к полученным результатам. К сожалению, общепринятых критериев определения выбросов не существует, и здесь многое зависит от добросовестности исследователя. Лучший способ - содержательно понять, с чем связано наличие «выброса». Так, в нашем примере нетипичное положение Самарской области в признаковом пространстве связано с тем, что в 1999 г. одним из активных лидеров правых был глава региона К. Титов. Соответственно, высокий результат СПС в регионе был обусловлен не только поддержкой партии как таковой, но и поддержкой губернатора.

Возвратимся к нашему исследованию. Мы выяснили, что голосование за СПС и «Яблоко» довольно плотно коррелирует между собой

Чисто технически мы можем вычислять каждый парный коэффициент корреляции отдельно, но удобнее сразу получить матрицу интеркорреляций (матрицу парных корреляций). Матрица обладает диагональной симметрией. В нашем случае она будет выглядеть следующим образом:

Мы получили статистически значимые коэффициенты корреляции, подтверждающие выдвинутую нами гипотезу. Так, доля городского населения оказалась отрицательно связанной как с поддержкой СПС (г= -0,61), так и с поддержкой «Яблока» (г= -0,55). Можно заметить, что переменная «поддержка СПС» более чувствительна к фактору урбанизации по сравнению с переменной «поддержка "Яблока"».

«Яблоко»

В этом примере мы уже начинаем мыслить в категориях влияния одной переменной на другую. Строго говоря, и это отмечено выше, корреляционный анализ не различает зависимых и независимых переменных, фиксируя лишь их взаимную статистическую связь. В то же время содержательно мы понимаем, что именно принадлежность

Следует отметить, что после чистки выбросов (см. диаграммы рассеяния) связь была бы еще плотнее. Так, после удаления двух выбросов (Самарская область и Усть-Ордынский Бурятский АО) плотность коэффициента для СПС увеличивается до -0,65.

избирателей к городскому или сельскому населению влияет на их электоральный выбор, а никак не наоборот.

Интерпретация интенсивности связи

Мы подошли к проблеме интерпретации интенсивности связи на основе значения коэффициента корреляции Пирсона. Определенного жесткого правила здесь не существует; скорее речь идет о совокупном опыте, накопленном в процессе статистических исследований. Традиционной можно считать следующую схему интерпретации данного коэффициента:

Необходимо отметить, что подобный вариант интерпретации плотности коэффициента корреляции применим в науках, в гораздо большей степени опирающихся на количественные данные, нежели наука политическая (например, в экономике). В эмпирических исследованиях политики довольно редко можно обнаружить г > 0,7; коэффициент же со значением 0,9 - случай просто уникальный. Это связано прежде всего с особенностями мотивации политического поведения - сложной, многофакторной, нередко иррациональной. Ясно, что такое сложное явление, как голосование за определенную политическую партию , не может целиком подчиняться одному или даже двум факторам. Поэтому применительно к политическим исследованиям предлагаем несколько смягченную схему интерпретации:

0,4 > г > 0,3 - слабая корреляция;

0,6 > г > 0,4 - средняя корреляция;

Г > 0,7 - сильная корреляция.

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: г= 0,83; 1995-1996: г = 0,76;

1999-2000: г = 0,74; 2003-2004: г= 0,73). На максимальной временной дистанции - между президентскими и парламентскими выборами 1991 - 1993 и 2003-2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определенная преемственность обнаруживается на протяжении восьми лет, в течение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свидетельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электоральной культуры территорий.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обнаружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной характеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных регионов России.

Устойчивость пропорционального распределения явки по субъектам Федерации достаточно просто проверяется методом корреляционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991-2004 гг. довольно четко демонстрирует существующую тенденцию. Статистическая связь наиболее сильна внутри одного электорального цикла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: /-= 0,83; 1995-1996: г= 0,76;

1999-2000: г= 0,74; 2003-2004: г= 0,73). На максимальной временной дистанции - между президентскими и парламентскими выборами 1991 - 1993 и 2003-2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определенная преемственность обнаруживается на протяжении восьми лет, в течение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свидетельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электоральной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим числом категорий)?

В этих ситуациях рекомендуется вычислять коэффициенты корреляции рангов, наиболее известным из которых является коэффициент Спирмана. Ранговая корреляция оперирует логикой порядкового уровня: принимаются во внимание не абсолютные значения, а отношения порядка (возрастания и убывания). В какой-то мере ранговую корреляцию можно считать усложненной версией расчета показателя гамма (у), который мы рассматривали в качестве стандартной меры связи порядковых переменных.

Коэффициент корреляции Спирмана колеблется в том же интервале, что и коэффициент Пирсона - от 0 до ± 1. Принципы интерпретации значений коэффициента также идентичны. Дополнительно стоит отметить, что ранговая корреляция не чувствительна к выбросам, так как не чувствительна к абсолютным значениям вообще.

Корреляционный анализ является одним из наиболее широко используемых статистических методов, в частности и в рамках политической науки. При своей относительной простоте он может быть весьма полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимоза­висимостях только формируются.

Умение работать с данной статистической техникой важно и в силу того, что она используется как со­ставная часть более сложных, комплексных методов, в том числе факторного анализа, некоторых версий кластер-анализа и др.

Целью корреляционного анализа является измерение стати­стической взаимозависимости между двумя или более переменными. В слу­чае, если исследуется связь двух переменных, корреляционный анализ будет парным; если число переменных более двух - множественным.

Следует подчеркнуть, что переменные в корреляционном анализе как бы «равноправны» - они не делятся на зависимые и независимые (объясняемые и объясняющие). Мы рассматриваем именно взаимозависимость (взаимосвязь) переменных, а не влияние одной из них на другую.

Понятие «корреляционный анализ» фактически объединяет несколь­ко методов анализа статистической связи. В фокусе нашего внимания будет находиться наиболее распространенный из них - метод Пирсона (Pearson) . Его применение ограничено следующими условиями:

Переменные должны быть измерены, как минимум, на интер­вальном уровне;

Связь между переменными должна носить линейный характер, т.е. фиксироваться прямой линией. При наличии нелинейной связи корреляционный анализ Пирсона, скорее всего, не даст ее адекватно­го отображения;

Коэффициент Пирсона вычисляется по следующей формуле: ,

где Xj и у/ - значения двух переменных, х и у - их средние значения, sx и sy - их стан­дартные отклонения; п - количество пар значений.

Анализируемые переменные должны быть распределены нор­мально (или, во всяком случае, приближаться к нормальному распределению).

Корреляционный анализ фиксирует две характеристики статисти­ческой взаимосвязи между переменными:

Направленность связи. Как уже говорилось, по направленности связь бывает прямая (положительная) и обратная (отрицательная);

Интенсивность (плотность, теснота) связи. Эта характеристика определяет наши возможности по предсказанию значений одной пе­ременной на основании значений другой.

Чтобы более наглядно представить себе особенности корреляцион­ного анализа, обратимся к примеру из сферы исследования электоральных процессов. Предположим, мы проводим сравнительный ана­лиз электората двух политических партий либеральной ориентации - Союза правых сил и «Яблока». Наша задача - понять, существует ли общность электората СПС и «Яблока» в территориальном разрезе и насколько она значима. Для этого мы можем, например, взять данные электоральной статистики, характеризующие уровень поддержки этих партий, в разрезе данных избирательных комиссий субъектов Федера­ции. Проще говоря, мы смотрим на проценты, полученные СПС и «Яблоком» по регионам России. Ниже приводятся данные по выборам депутатов Государственной думы 1999 г. (количество регионов 88, по­скольку выборы в Чеченской Республике не проводились).

bgcolor=white>7.24
Случай Переменные (%)
«Яблоко» СПС
Республика Адыгея 4,63 3,92
Республика Алтай 3,38 5,40
Республика Башкортостан 3,95 6,04
Республика Бурятия 3,14 8,36
Республика Дагестан 0,39 1,22
Республика Ингушетия 2,89 0,38
Кабардино-Балкарская Республика 1,38 1,30
Республика Калмыкия 3,07 3,80
Карачаево-Черкесская Республика 4,17 2,94
Республика Карелия 9,66 10,25
Республика Коми 8,91 9,95
Республика Марий Эл 4,68
И т.д. (всего 88 случаев)

Таким образом, у нас есть две переменные - «поддержка СПС в 1999 г.» и «поддержка "Яблока" в 1999 г.», простейшим образом операционализированные через процент голосов, поданных за эти партии, от числа избирателей, принявших участие в голосовании на федеральных парламентских выборах 1999 г. В качестве случаев выступают соответствующие данные, обобщенные на уровне реги­онов РФ.

Далее, в нашем распоряжении есть методический прием, кото­рый является одним из основных в статистике, - геометрическое представление. Геометрическим представлением называют представ­ление случая как точки в условном пространстве, формируемом «осями» - переменными. В нашем примере мы можем представить каждый регион как точку в двухмерном пространстве голосований за правые партии. Ось Сформирует признак «поддержка СПС», ось Г- «поддержка "Яблока"» (или наоборот; для корреляционного анализа это неважно в силу неразличения зависимых и независимых переменных). «Координатами» региона будут: по оси X- значение переменной «поддержка СПС» (процент, набранный в регионе дан­ной партией); по оси Г- значение переменной «поддержка "Ябло­ка"». Так, Республика Адыгея будет иметь координаты (3,92; 4,63), Республика Алтай - (3,38; 5,4) и т.д. Осуществив геометрическое представление всех случаев, мы получаем диаграмму рассеяния, или корреляционное поле.

Даже сугубо визуальный анализ диаграммы рассеяния наводит на мысль, что совокупность точек можно расположить вдоль некоторой условной прямой, называемой линией регрессии. Математически линия регрессии строится методом наименьших квадратов (высчитывается такое положение линии, при котором сумма квад­ратов расстояний от наблюдаемых точек до прямой является минимальной).

Интенсивность связи будет зависеть от того, насколько тесно точки (случаи) расположены вдоль линии регрессии. В коэффициен­те корреляции (обозначается г), который и является числовым ре­зультатом корреляционного анализа, плотность колеблется от 0 до 1. При этом чем ближе значение коэффициента к 1, тем плотнее связь; чем ближе значение к 0, тем связь слабее. Так, при г= 1 связь приобретает характер функциональной - все точки «ложатся» на одну прямую. При г = 0, фиксирующем полное отсутствие связи, построение линии регрессии становится невозможным. В нашем примере г = 0,62, что свидетельствует о наличии значимой статис­тической связи (подробнее об интерпретации коэффициента кор­реляции см. ниже).

Тип связи определяется наклоном линии регрессии. В коэффици­енте корреляции существует всего два значения типа связи: обратная (знак «-») и прямая (отсутствие знака, так как знак « + » традиционно не записывается). В нашем примере связь прямая. Соответственно, итоговый результат анализа 0,62.

Сегодня коэффициент корреляции Пирсона можно легко подсчи­тать с помощью всех компьютерных пакетов программ статистическо­го анализа (SPSS, Statistica, NCSS и др.) и даже в широко распростра­ненной программе Excel (надстройка «анализ данных»). Настоятельно рекомендуем пользоваться профессиональными пакетами, так как они позволяют визуально оценить корреляционное поле.

Почему важна визуальная оценка геометрического представления данных? Во-первых, мы должны убедиться, что связь линейна по форме, а здесь самый простой и эффективный метод - именно зри­тельная оценка. Напомним, что в случае ярко выраженной нелинейности связи вычисление коэффициента корреляции окажется беспо­лезным. Во-вторых, визуальная оценка позволяет найти в данных выбросы, т.е. нетипичные, резко выделяющиеся случаи.

Вернемся к нашему примеру с двумя партиями. Внимательно глядя на диаграмму рассеяния, мы замечаем по меньшей мере один нетипичный случай, лежащий явно в стороне от «общей магистра­ли», тенденции связи переменных. Это точка, представляющая дан­ные по Самарской области. Хотя и в меньшей степени, но тоже нетипично положение Томской, Нижегородской областей и Санкт- Петербурга.

Можно скорректировать данные анализа, удалив сильно отклоня­ющиеся наблюдения, т.е. произведя «чистку выбросов». В силу специ­фики вычисления линии регрессии, связанной с подсчетом суммы квадратов расстояний, даже единичный выброс может существенно исказить общую картину.

Удалив только один из 88 случаев - Самарскую область, - мы по­лучим значение коэффициента корреляции, отличное от полученно­го ранее: 0,73 по сравнению с 0,62. Плотность связи усилилась более чем на 0,1 - это весьма и весьма существенно. Избавившись отточек, соответствующих Санкт-Петербургу, Томской и Нижегородской об­ластям, получим еще более высокую плотность: 0,77.

Впрочем, чисткой выбросов не следует увлекаться: сокращая ко­личество случаев, мы понижаем общий уровень статистического доверия к полученным результатам. К сожалению, общепринятых кри­териев определения выбросов не существует, и здесь многое зависит от добросовестности исследователя. Лучший способ - содержательно понять, с чем связано наличие «выброса». Так, в нашем примере не­типичное положение Самарской области в признаковом простран­стве связано с тем, что в 1999 г. одним из активных лидеров правых был глава региона К. Титов. Соответственно, высокий результат СПС в регионе был обусловлен не только поддержкой партии как таковой, но и поддержкой губернатора.

Возвратимся к нашему исследованию. Мы выяснили, что голосо­вание за СПС и «Яблоко» довольно плотно коррелирует между собой на массиве данных, взятых в территориальном разрезе. Логично предположить, что в основе этой связи лежит некий фактор или комплекс факторов, который мы пока непосредственно не учитывали. Исследуя данные электоральной статистики разного уровня, нетрудно заметить, что обе партии демонстрируют лучшие результаты в городах и худшие - в сельских районах. Мы можем выдвинуть гипотезу, что од­ним из факторов, опосредующих связь между переменными, является уровень урбанизации территорий. Этот признак проще всего операционализировать через переменную «доля сельского населения» или «доля городского населения». Такая статистика существует по каждо­му субъекту Федерации.

Теперь в наших исходных данных появляется третья переменная - пусть это будет «доля сельского населения».

Чисто технически мы можем вычислять каждый парный коэффици­ент корреляции отдельно, но удобнее сразу получить матрицу интер­корреляций (матрицу парных корреляций). Матрица обладает диаго­нальной симметрией. В нашем случае она будет выглядеть следующим образом:

Мы получили статистически значимые коэффициенты корреля­ции, подтверждающие выдвинутую нами гипотезу. Так, доля городского населения оказалась отрицательно связанной как с поддержкой СПС (г= -0,61), так и с поддержкой «Яблока» (г= -0,55). Мож­но заметить, что переменная «поддержка СПС» более чувствительна к фактору урбанизации по сравнению с переменной «поддержка "Яблока"».

Следует отметить, что после чистки выбросов (см. диаграммы рассеяния) связь была бы еще плотнее. Так, после удаления двух выбросов (Самарская области и Усть-Ордынский Бурятский АО) плотности коэффициента для СПС увеличивается до -0,65.

В этом примере мы уже начинаем мыслить в категориях влияния одной переменной на другую. Строго говоря, и это отмечено выше, корреляционный анализ не различает зависимых и независимых пе­ременных, фиксируя лишь их взаимную статистическую связь. В то же время содержательно мы понимаем, что именно принадлежность избирателей к городскому или сельскому населению влияет на их электоральный выбор, а никак не наоборот.

Интерпретация интенсивности связи

Мы подошли к проблеме интерпретации интенсивности связи на ос­нове значения коэффициента корреляции Пирсона.

Определенного жесткого правила здесь не существует; скорее речь идет о совокупном опыте, накопленном в процессе статистических исследований. Тра­диционной можно считать следующую схему интерпретации данного коэффициента:

Необходимо отметить, что подобный вариант интерпретации плотности коэффициента корреляции применим в науках, в гораз­до большей степени опирающихся на количественные данные, не­жели наука политическая (например, в экономике). В эмпиричес­ких исследованиях политики довольно редко можно обнаружить г > 0,7; коэффициент же со значением 0,9 - случай просто уникаль­ный. Это связано прежде всего с особенностями мотивации поли­тического поведения - сложной, многофакторной, нередко ирра­циональной. Ясно, что такое сложное явление, как голосование за определенную политическую партию, не может целиком подчи­няться одному или даже двум факторам. Поэтому применительно к политическим исследованиям предлагаем несколько смягченную схему интерпретации:

0,4 > г> 0,3 - слабая корреляция;

0,6 > г> 0,4 - средняя корреляция;

Г> 0,7 - сильная корреляция.

Существует еще одна полезная процедура, позволяющая оце­нить значимость коэффициента корреляции в процессе вычисле­ния коэффициента детерминации, который представляет собой г, возведенный в квадрат (г 2). Смысл процедуры состоит в том, что при возведении в квадрат низкие коэффициенты потеряют «в весе»

гораздо сильнее, чем высокие. Так, 0,9 2 = 0,81 (значение снижается всего на 0,09); 0,5 2= 0,25 (здесь мы теряем уже половину значения); 0,3 2 = 0,09 (более чем трехкратная «потеря веса»). Когда речь идет о переменных, которые мы можем содержательно интерпретировать как «определяющие» и «определяемые», значение г2 будет показы­вать долю случаев, которые объясняет определяющая переменная.

В нашем примере коэффициент корреляции между переменными «поддержка СПС» и «доля сельского населения» после чистки вы­бросов составил -0,65. Коэффициент детерминации составляет соответственно -0,65 2 = 0,42. Несколько упрощая реальное положение дел, мы можем утверждать, что фактор урбанизации объясняет примерно 40% вариации переменной «голосование за СПС» по ре­гионам России в 1999 г.


1991 1993 1995 19961 1999 2000 2003 2004
1991 1
1993 0,83 1
1995 0,52 0,66 1
1996 0,43 0,47 0,76 і
1999 0,14 0,26 0,61 0,56 1
2000 0,13 0,15 0,34 0,47 0,74 1
2003 0,04 0,13 0,36 0,38 0,81 0,75 1
2004 0,04 0,10 0,11 0,21 0,55 0,66 0,73 1

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: г= 0,83; 1995-1996: г= 0,76; 1999 - 2000: г = 0,74; 2003 - 2004: г= 0,73). На максимальной времен­ной дистанции - между президентскими и парламентскими выбора­ми 1991 - 1993 и 2003 - 2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени проис­ходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парла­ментских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определен­ная преемственность обнаруживается на протяжении восьми лет, в те­чение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свиде­тельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электораль­ной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим чис­лом категорий)?

гораздо сильнее, чем высокие. Так, 0,9 2= 0,81 (значение снижается всего на 0,09); 0,5 2= 0,25 (здесь мы теряем уже половину значения); 0,3 2= 0,09 (более чем трехкратная «потеря веса»). Когда речь идет о переменных, которые мы можем содержательно интерпретировать как «определяющие» и «определяемые», значение г2 будет показы­вать долю случаев, которые объясняет определяющая переменная.

В нашем примере коэффициент корреляции между переменными «поддержка СПС» и «доля сельского населения» после чистки вы­бросов составил -0,65. Коэффициент детерминации составляет соответственно -0,65 2= 0,42. Несколько упрощая реальное положе­ние дел, мы можем утверждать, что фактор урбанизации объясняет примерно 40% вариации переменной «голосование за СПС» по ре­гионам России в 1999 г.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обна­ружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной ха­рактеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных ре­гионов России.

Устойчивость пропорционального распределения явки по субъ­ектам Федерации достаточно просто проверяется методом корреля­ционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991 - 2004 гг. довольно четко демонстрирует существующую тенденцию. Статис­тическая связь наиболее сильна внутри одного электорального цик­ла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.

Основные понятия корреляционного анализа

Выделяют несколько видов связи между переменными:

Корреляционная зависимость предполагает взаимную согласован­ность изменений переменных величин, а также то, что эти изменения можно измерить однократно или многократно (в данном случае гово­рят о плотности связи переменных, но не о причинно-следственных связях); например, в современном российском обществе чем выше возраст, тем ниже социальный статус человека; отдельные проявления геронтократии эту закономерность не нарушают.

Функциональное воздействие предполагает, что изменения не­зависимой переменной сопровождаются все более ускоряющимися изменениями зависимой переменной (причинно-следственные свя­зи фиксируют влияние независимой переменной на зависимую); на­пример, чем более радикальными политическими взглядами обладает человек, тем в большей степени он не приемлет существующий поли­тический режим; в то же время нельзя утверждать, что чем в большей степени человек негативно оценивает власть, тем более радикальными взглядами он обладает.

Функциональная зависимость - связь переменных, означающая, что изменение одной переменной оказывает воздействие на изменение другой, которая в свою очередь воздействует на первую переменную, т.е. это связи взаимодействия; например, информированность челове­ка о политике напрямую связана с интересом к ней; чем больше чело­век политикой интересуется, тем больше в ней разбирается.

Связь может быть нелинейной и немонотонной.

Каким бы в итоге ни оказался тип связи между переменными, не­обходимо убедиться в ее наличии в принципе. Корреляционный ана­лиз применяется для выяснения взаимодействия и тенденций измене­ния характеристик изучаемого явления.

Первоначальной стадией его развития считается период 1870- 1880-х годов, а автором понятия «коэффициент корреляции» - Фрэнсис Гальтон. Наиболее серьезные разработки в области корре­ляционного анализа на рубеже XIX-XX вв. выполнил Карл Пирсон. Традиционно кбрреляционный анализ используется для проверки ги­потезы о статистической зависимости двух или нескольких перемен­ных. В качестве вспомогательного средства анализ корреляций можно использовать при проверке пригодности экспериментальных гипотез и для включения переменных в факторный и регрессионный анализ. Корреляционный анализ осуществляется с помощью сравнения и со­поставления рядов распределения, построенных на основании группи­ровок по различным признакам.

Корреляция - наличие статистической взаимосвязи признаков, когда каждому определенному значению одного признака X соответ­ствует определенное значение У (или комплекс значений К-ряда рас­пределения). Корреляционный анализ выясняет функциональную за­висимость между переменными величинами, которая характеризуется тем, что каждому значению одной из них соответствует вполне опреде- тенпое значение другой. Однако корреляционный анализ не предпо­лагает выявления каузальных связей, поэтому при интерпретации ре- 1ультатов формулировки типа «переменная х влияет на переменную у» или «переменная х зависит от переменной у» недопустимы.

Различают парную и множественную корреляции. Парная корреля­ция характеризует тип, форму и плотность связи между двумя призна­ками, множественная - между несколькими.

Корреляционная зависимость возникает чаще всего там, где одно явление находится под воздействием большого числа факторов, дей­ствующих с разной силой, поэтому существуют специальные меры корреляционной связи, называемые коэффициентами корреляции. Ко­эффициенты (в статистике их общее количество исчисляется десят­ками) показывают степень взаимосвязи явлений (плотность корреля­ционной связи, иногда исследователи говорят об интенсивности связи) и характер этой связи (направленность ). Связь может быть прямой и обратной. Например, чем старше избиратель, тем более активно он участвует в выборах. Чем выше уровень доходов людей, тем в меньшей степени они склонны участвовать в выборах в качестве избирателей (обратная связь). Чем выше коэффициент корреляции между двумя переменными, тем точнее можно предсказать значения одной из них по значениям другой. Характер связи также определяется в категориях «монотонная » (направление изменения одной переменной не меняется при изменении второй переменной) и «немонотонная » связь. Помимо оценки плотности и направленности связи необходимо учитывать на­дежность (достоверность ) связи.

Корреляционный анализ последовательно решает три практиче­ские задачи:

    определение корреляционного поля и составление корреляци­онной (в данном случае это комбинированная) таблицы;

    вычисление выборочных корреляционных отношений или ко­эффициентов корреляции;

    проверка статистической гипотезы значимости связи.

Коэффициент корреляции не содержит информации о том, явля­ется ли данная связь между ними причинно-следственной или сопут­ствующей (порожденной общей причиной). Этот вопрос исследователь должен решать самостоятельно на основе содержательных представле­ний о структуре, динамике изучаемых социальных объектов, корре­ляций между изучаемыми признаками, использовать иные способы статистического анализа (регрессионный, факторный, дискриминант­ный, путевой и т.д.). Но величина коэффициента позволяет оценить плотность связи как меньшую (незначимую) или большую. По знаку коэффициента корреляции для порядковых рядов мы можем сказать, является ли эта связь прямой или обратной (для номинальных рядов знак коэффициента не несет смысловой нагрузки).

Для установления корреляционной связи между двумя призна­ками необходимо доказать, что все другие переменные не оказывают воздействия на отношения двух переменных, являющихся предметом изучения. В противном случае возникает ситуация ложной корреляции. Секрет возникновения ложной корреляции заключается в том, что у двух явлений, связь которых формально подкрепляется наличием ста­тистической связи, есть общая причина, в равной степени влияющая на каждое из них.

Корреляционному анализу предшествует стадия расчета стати­стики х 2 - Но на основании полученного значения статистики х 2 мы ни­чего не можем сказать о плотности связи анализируемых переменных. Цля решения такой задачи необходимо обратиться к коэффициентам корреляционной связи.

Традиционным для выполнения корреляционного анализа являет­ся обращение к коэффициенту корреляции Пирсона (Pearson) Р (в ли­тературе он обозначается и через г).

Если при описании политического объекта определяется лишь на­личие или отсутствие признака или если изучается связь между аль­тернативными признаками, то корреляционные таблицы (таблицы сопряженного признака) - 4-клеточные. В этом случае применяются коэффициент Юла(О) и коэффициент контингенции (ф). Они основаны на принципе совместного появления событий (значений признаков у объекта исследования) и пригодны для анализа любых признаков (ме­трических, порядковых и даже номинальных).

В случае если номинальные шкалы имеют большее число значений, чем два, то для определения зависимости между признаками пользуют­ся коэффициентами сопряженности Пирсона (Р ), Чупрова (7) и Кра­мера (К). При этом определенное значение имеет размерность таблицы с на к, в которой отображены значения двух признаков. Коэффициенты Чупрова и Крамера считаются более «строгими», чем коэффициент со­пряженности Пирсона. Но поскольку вычисления в них строятся с уче­том статистики х 2 , то все связанные с ней ограничения распространя­ются и на эти коэффициенты.

Множественный коэффициент корреляции (IV), который иногда называют коэффициентом конкордации, применяется для оценки со­гласованности двух или нескольких рядов ранжированных значений переменных.

Вариантов расчета коэффи­циентов корреляции между признаками в статистическом пакете SPSS два.

Функциональная зависимость и корреляция . Еще Гиппократ в VI в. до н. э. обратил внимание на наличие связи между телосложением и темпераментом людей, между строением тела и предрасположенностью к тем или иным заболеваниям. Определенные виды подобной связи выявлены также в животном и растительном мире. Так, существует зависимость между телосложением и продуктивностью у сельскохозяйственных животных; известна связь между качеством семян и урожайностью культурных растений и т.д. Что же касается подобных зависимостей в экологии, то существуют зависимости между содержанием тяжелых металлов в почве и снежном покрове от их концентрации в атмосферном воздухе и т.п. Поэтому естественно стремление использовать эту закономерность в интересах человека, придать ей более или менее точное количественное выражение.

Как известно, для описания связей между переменными величинами применяют математические понятие функции f , которая ставит в соответствие каждому определенному значению независимой переменной x определенное значение зависимой переменной y , т.е. . Такого рода однозначные зависимости между переменными величинамиx и y называют функциональными . Однако такого рода связи в природных объектах встречаются далеко не всегда. Поэтому зависимость между биологическими, а также и экологическими признаками имеет не функциональный, а статистический характер, когда в массе однородных индивидов определенному значению одного признака, рассматриваемого в качестве аргумента, соответствует не одно и то же числовое значение, а целая гамма распределяющихся в вариационный ряд числовых значений другого признака, рассматриваемого в качестве зависимой переменной, или функции. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией..

Функциональные связи легко обнаружить и измерить на единичных и групповых объектах, однако этого нельзя проделать с корреляционными связями, которые можно изучать только на групповых объектах методами математической статистики. Корреляционная связь между признаками бывает линейной и нелинейной, положительной и отрицательной. Задача корреляционного анализа сводится к установлению направления и формы связи между варьирующими признаками, измерению ее тесноты и, наконец, к проверке достоверности выборочных показателей корреляции.

Зависимость между переменными X и Y можно выразить аналитически (с помощью формул и уравнений) и графически (как геометрическое место точек в системе прямоугольных координат). График корреляционной зависимости строят по уравнению функции или, которая называетсярегрессией . Здесь и– средние арифметические, найденные при условии, чтоX или Y примут некоторые значения x или y . Эти средние называются условными .

11.1. Параметрические показатели связи

Коэффициент корреляции . Сопряженность между переменными величинами x и y можно установить, сопоставляя числовые значения одной из них с соответствующими значениями другой. Если при увеличении одной переменной увеличивается другая, это указывает на положительную связь между этими величинами, и наоборот, когда увеличение одной переменной сопровождается уменьшением значения другой, это указывает на отрицательную связь .

Для характеристики связи, ее направления и степени сопряженности переменных применяют следующие показатели:

    линейной зависимость – коэффициент корреляции ;

    нелинейный – корреляционной отношение .

Для определения эмпирического коэффициента корреляции используют следующую формулу:

. (1)

Здесь s x и s y – средние квадратические отклонения.

Коэффициент корреляции можно вычислить, не прибегая к расчету средних квадратических отклонений, что упрощает вычислительную работу, по следующей аналогичной формуле:

. (2)

Коэффициент корреляции – безразмерное число, лежащее в пределах от –1 до +1. При независимом варьировании признаков, когда связь между ними полностью отсутствует, . Чем сильнее сопряженность между признаками, тем выше значение коэффициента корреляции. Следовательно, приэтот показатель характеризует не только наличие, но и степень сопряженности между признаками. При положительной или прямой связи, когда большим значениям одного признака соответствуют большие же значения другого, коэффициент корреляции имеет положительный знак и находится в пределах от 0 до +1, при отрицательной или обратной связи, когда большим значениям одного признака соответствуют меньшие значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1.

Коэффициент корреляции нашел широкое применение в практике, но он не является универсальным показателем корреляционных связей, так как способен характеризовать только линейные связи, т.е. выражаемые уравнением линейной регрессии (см. тему 12). При наличии нелинейной зависимости между варьирующими признаками применяют другие показатели связи, рассмотренных ниже.

Вычисление коэффициента корреляции . Это вычисление производят разными способами и по-разному в зависимости от числа наблюдений (объема выборки). Рассмотрим отдельно специфику вычисления коэффициента корреляции при наличии малочисленных выборок и выборок большого объема.

Малые выборки . При наличии малочисленных выборок коэффициент корреляции вычисляют непосредственно по значениям сопряженных признаков, без предварительной группировки выборочных данных в вариационные ряды. Для этого служат приведенные выше формулы (1) и (2). Более удобными, особенно при наличии многозначных и дробных чисел, которыми выражаются отклонения вариант х i и y i от средних и, служат следующие рабочие формулы:

где ;

;

Здесь x i и y i – парные варианты сопряженных признаков x и y ; и –средние арифметические;– разность между парными вариантами сопряженных признаковx и y ; n – общее число парных наблюдений, или объем выборочной совокупности.

Эмпирический коэффициент корреляции, как и любой другой выборочный показатель, служит оценкой своего генерального параметра ρ и как величина случайная сопровождается ошибкой:

Отношение выборочного коэффициента корреляции к своей ошибке служит критерием для проверки нулевой гипотезы – предположения о том, что в генеральной совокупности этот параметр равен нулю, т.е. . Нулевую гипотезу отвергают на принятом уровне значимостиα , если

Значения критических точек t st для разных уровней значимости α и чисел степеней свободы приведены в табл.1 Приложений.

Установлено, что при обработке малочисленных выборок (особенно когда n < 30 ) расчет коэффициента корреляции по формулам (1) – (3) дает несколько заниженные оценки генерального параметра ρ , т.е. необходимо внести следующую поправку:

z-преобразование Фишера . Правильное применение коэффициента корреляции предполагает нормальное распределение двумерной совокупности сопряженных значений случайных величин x и y . Из математической статистики известно, что при наличии значительной корреляции между переменными величинами, т.е. когда R xy > 0,5 выборочное распределение коэффициента корреляции для большего числа малых выборок, взятых из нормально распределяющейся генеральной совокупности, значительно отклоняются от нормальной кривой.

Учитывая это обстоятельство, Р. Фишер нашел более точный способ оценки генерального параметра по значению выборочного коэффициента корреляции. Этот способ сводится к замене R xy преобразованной величиной z, которая связана с эмпирическим коэффициентом корреляции, следующим образом:

Распределение величины z является почти неизменным по форме, так как мало зависит от объема выборки и от значения коэффициента корреляции в генеральной совокупности, и приближается к нормальному распределению.

Критерием достоверности показателя z является следующее отношение:

Нулевая гипотеза отвергается на принятом уровне значимости α и числе степеней свободы . Значения критических точекt st приведены в табл.1 Приложений.

Применение z-преобразования позволяет с большей уверенностью оценивать статистическую значимость выборочного коэффициента корреляции, а также и разность между эмпирическими коэффициентами , когда в этом возникает необходимость.

Минимальный объем выборки для точной оценки коэффициента корреляции. Можно рассчитать объем выборки для заданного значения коэффициента корреляции, который был бы достаточен для опровержения нулевой гипотезы (если корреляция между признаками Y и X действительно существует). Для этого служит следующая формула:

где n – искомый объем выборки; t – величина, заданная по принятому уровню значимости (лучше для α = 1%); z – преобразованный эмпирический коэффициент корреляции.

Большие выборки . При наличии многочисленных исходных данных их приходится группировать в вариационные ряды и, построив корреляционную решетку, разность по ее клеткам (ячейкам) общие частоты сопряженных рядов. Корреляционная решетка образуется пересечением строк и столбцов, число которых равно числу групп или классов коррелируемых рядов. Классы располагаются в верхней строке и в первой (слева) столбце корреляционной таблицы, а общие частоты, обозначаемые символом f xy , – в клетках корреляционной решетки, составляющей основную часть корреляционной таблицы.

Классы, помещенные в верхней строке таблицы, обычно располагаются слева направо в возрастающем порядке, а в первом столбце таблицы – сверху вниз в убывающем порядке. При таком расположении классов вариационных рядов их общие частоты (при наличии положительной связи между признаками Y и X ) будут распределяться по клеткам решетки в виде эллипса по диагонали от нижнего левого угла к верхнему правому углу решетки или (при наличии отрицательной связи между признаками) в направлении от верхнего левого угла к нижнему правому углу решетки. Если же частоты f xy распределяются по клеткам корреляционной решетки более или менее равномерно, не образуя фигуры эллипса, это будет указывать на отсутствие корреляции между признаками.

Распределение частот f xy по клеткам корреляционной решетки дает лишь общее представление о наличии или отсутствии связи между признаками. Судить о тесноте или менее точно лишь по значению и знаку коэффициента корреляции . При вычислении коэффициента корреляции с предварительной группировки выборочных данных в интервальные вариационные ряды не следует брать слишком широкие классовые интервалы. Грубая группировка гораздо сильнее сказывается на значении коэффициента корреляции, чем это имеет место при вычислении средних величин и показателей вариации.

Напомним, что величина классового интервала определяется по формуле

где x max , x min – максимальная и минимальная варианты совокупности; К – число классов, на которые следует разбить вариацию признака. Опыт показал, что в области корреляционного анализа величину К можно поставить в зависимость от объема выборки примерно следующим образом (табл.1).

Таблица 1

Объем выборки

Значение К

50 ≥ n > 30

100 ≥ n > 50

200 ≥ n > 100

300 ≥ n > 200

Как и другие статистические характеристики, вычисляемые с предварительной группировкой исходных данных в вариационные ряды, коэффициент корреляции определяют разными способами, дающими совершенно идентичные результаты.

Способ произведений . Коэффициент корреляции можно вычислить используя основные формулы (1) или (2), внеся в них поправку на повторяемость вариант в димерной совокупности. При этом, упрощая символику, отклонения вариант от их средних обозначим через а , т.е. и. Тогда формула (2) с учетом повторяемости отклонений примет следующее выражение:

Достоверность этого показателя оценивается с помощью критерия Стьюдента, который представляет отношение выборочного коэффициента корреляции к своей ошибке, определяемой по формуле

Отсюда и если эта величина превышает стандартное значение критерия Стьюдентаt st для степени свободы и уровне значимостиα (см. Таблицу 2 Приложений), то нулевую гипотезу отвергают.

Способ условных средних . При вычислении коэффициента корреляции отклонения вариант (“классов”) можно находить не только от средних арифметических и, но и от условных средних А х и A y . При этом способе в числитель формулы (2) вносят поправку и формула приобретает следующий вид:

где f xy – частоты классов одного и другого рядов распределения; и, т.е. отклонения классов от условных средних, отнесенные к величине классовых интерваловλ ; n – общее число парных наблюдений, или объем выборки; и– условные моменты первого порядка, гдеf x – частоты ряда Х , а f y – частоты ряда Y ; s x и s y – средние квадратические отклонения рядов X и Y , вычисляемые по формуле .

Способ условных средних имеет преимущество перед способом произведений, так как позволяет избегать операции с дробными числами и придавать один и тот же (положительный) знак отклонениям a x и a y , что упрощает технику вычислительной работы, особенно при наличии многозначных чисел.

Оценка разности между коэффициентами корреляции . При сравнении коэффициентов корреляции двух независимых выборок нулевая гипотеза сводится к предположению о том, что в генеральной совокупности разница между этими показателями равна нулю. Иными словами, следует исходить из предположения, что разница, наблюдаемая между сравниваемыми эмпирическими коэффициентами корреляции, возникла случайно.

Для проверки нулевой гипотезы служит t-критерий Стьюдента, т.е. отношение разности между эмпирическими коэффициентами корреляции R 1 и R 2 к своей статистической ошибке, определяемой по формуле:

где s R1 и s R2 – ошибки сравниваемых коэффициентов корреляции.

Нулевая гипотеза опровергается при условии, что для принятого уровне значимостиα и числе степеней свободы .

Известно, что более точную оценку достоверности коэффициента корреляции получают при переводе R xy в число z . Не является исключением и оценка разности между выборочными коэффициентами корреляции R 1 и R 2 , особенно в тех случаях, когда последние вычислены на выборках сравнительно небольшого объема (n < 100 ) и по своему абсолютному значению значительно превышают 0,50.

Разность оценивают с помощью t-критерия Стьюдента, который строят по отношению этой разности к своей ошибке, вычисляемой по формуле

Нулевую гипотезу отвергают, если дляи принятого уровня значимостиα.

Корреляционное отношение . Для измерения нелинейной зависимости между переменными x и y используют показатель, который называют корреляционным отношением , который описывает связь двусторонне. Конструкция корреляционного отношения предполагает сопоставление двух видов вариации: изменчивости отдельных наблюдений по отношению к частным средним и вариации самих частных средних по сравнению с общей средней величиной. Чем меньшую часть составит первый компонент по отношению ко второму, тем теснота связи окажется большей. В пределе, когда никакой вариации отдельных значений признака возле частных средних не будет наблюдаться, теснота связи окажется предельно большой. Аналогичным образом, при отсутствии изменчивости частных средних теснота связи окажется минимальной. Так как это соотношение вариации может быть рассмотрено для каждого из двух признаков, получается два показателя тесноты связи – h yx и h xy . Корреляционное отношение является величиной относительной и может принимать значения от 0 до 1. При этом коэффициенты корреляционного отношения обычно не равны друг другу, т.е. . Равенство между этими показателями осуществимо только при строго линейной зависимости между признаками. Корреляционное отношение является универсальным показателем: оно позволяет характеризировать любую форму корреляционной связи – и линейную, и нелинейную.

Коэффициенты корреляционного отношения h yx и h xy определяют рассмотренными выше способами, т.е. способом произведений и способом условных средних.

Применение статистических методов при обработке материалов психологических исследований дает большую возможность извлечь из экспериментальных данных полезную информацию. Одним из самых распространенных методов статистики является корреляционный анализ.

Термин «корреляция» впервые применил французский палеонтолог Ж. Кювье, который вывел «закон корреляции частей и органов животных» (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел английский биолог и статистик Ф. Гальтон (не просто «связь» – relation , а «как бы связь» – corelation ).

Корреляционный анализ – это проверка гипотез о связях между переменными с использованием коэффициентов корреляции, двумерной описательной статистики, количественной меры взаимосвязи (совместной изменчивости) двух переменных. Таким образом, это совокупность методов обнаружения корреляционной зависимости между случайными величинами или признаками.

Корреляционный анализ для двух случайных величин заключает в себе:

  • построение корреляционного поля и составление корреляционной таблицы;
  • вычисление выборочных коэффициентов корреляции и корреляционных отношений;
  • проверку статистической гипотезы значимости связи.

Основное назначение корреляционного анализа – выявление связи между двумя или более изучаемыми переменными, которая рассматривается как совместное согласованное изменение двух исследуемых характеристик. Данная изменчивость обладает тремя основными характериcтиками: формой, направлением и силой.

По форме корреляционная связь может быть линейной или нелинейной. Более удобной для выявления и интерпретации корреляционной связи является линейная форма. Для линейной корреляционной связи можно выделить два основных направления: положительное («прямая связь») и отрицательное («обратная связь»).

Сила связи напрямую указывает, насколько ярко проявляется совместная изменчивость изучаемых переменных. В психологии функциональная взаимосвязь явлений эмпирически может быть выявлена только как вероятностная связь соответствующих признаков. Наглядное представление о характере вероятностной связи дает диаграмма рассеивания – график, оси которого соответствуют значениям двух переменных, а каждый испытуемый представляет собой точку.

В качестве числовой характеристики вероятностной связи используют коэффициенты корреляции, значения которых изменяются в диапазоне от –1 до +1. После проведения расчетов исследователь, как правило, отбирает только наиболее сильные корреляции, которые в дальнейшем интерпретируются (табл. 1).

Критерием для отбора «достаточно сильных» корреляций может быть как абсолютное значение самого коэффициента корреляции (от 0,7 до 1), так и относительная величина этого коэффициента, определяемая по уровню статистической значимости (от 0,01 до 0,1), зависящему от размера выборки. В малых выборках для дальнейшей интерпретации корректнее отбирать сильные корреляции на основании уровня статистической значимости. Для исследований, которые проведены на больших выборках, лучше использовать абсолютные значения коэффициентов корреляции.

Таким образом, задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

В настоящее время разработано множество различных коэффициентов корреляции. Наиболее применяемыми являются r -Пирсона, r -Спирмена и τ -Кендалла. Современные компьютерные статистические программы в меню «Корреляции» предлагают именно эти три коэффициента, а для решения других исследовательских задач предлагаются методы сравнения групп.

Выбор метода вычисления коэффициента корреляции зависит от типа шкалы, к которой относятся переменные (табл. 2).

Для переменных с интервальной и с номинальной шкалой используется коэффициент корреляции Пирсона (корреляция моментов произведений). Если, по меньшей мере, одна из двух переменных имеет порядковую шкалу или не является нормально распределенной, используется ранговая корреляция по Спирмену или

t-Кендалла. Если же одна из двух переменных является дихотомической, можно использовать точечную двухрядную корреляцию (в статистической компьютерной программе SPSS эта возможность отсутствует, вместо нее может быть применен расчет ранговой корреляции). В том случае если обе переменные являются дихотомическими, используется четырехполевая корреляция (данный вид корреляции рассчитываются SPSS на основании определения мер расстояния и мер сходства). Расчет коэффициента корреляции между двумя недихотомическими переменными возможен только тогда, кода связь между ними линейна (однонаправлена). Если связь, к примеру, U -образная (неоднозначная), коэффициент корреляции не пригоден для использования в качестве меры силы связи: его значение стремится к нулю.

Таким образом, условия применения коэффициентов корреляции будут следующими:

  • переменные, измеренные в количественной (ранговой, метрической) шкале на одной и той же выборке объектов;
  • связь между переменными является монотонной.

Основная статистическая гипотеза, которая проверяется корреляционным анализом, является ненаправленной и содержит утверждение о равенстве корреляции нулю в генеральной совокупности H 0: r xy = 0. При ее отклонении принимается альтернативная гипотеза H 1: r xy ≠ 0 о наличии положительной или отрицательной корреляции – в зависимости от знака вычисленного коэффициента корреляции.

На основании принятия или отклонения гипотез делаются содержательные выводы. Если по результатам статистической проверки H 0: r xy = 0 не отклоняется на уровне a, то содержательный вывод будет следующим: связь между X и Y не обнаружена. Если же при H 0 r xy = 0 отклоняется на уровне a, значит, обнаружена положительная (отрицательная) связь между X и Y . Однако к интерпретации выявленных корреляционных связей следует подходить осторожно. С научной точки зрения, простое установление связи между двумя переменными не означает существования причинно-следственных отношений. Более того, наличие корреляции не устанавливает отношения последовательности между причиной и следствием. Оно просто указывает, что две переменные взаимосвязаны между собой в большей степени, чем это можно ожидать при случайном совпадении. Тем не менее, при соблюдении осторожности применение корреляционных методов при исследовании причинно-следственных отношений вполне оправдано. Следует избегать категоричных фраз типа «переменная X является причиной увеличения показателя Y ». Подобные утверждения следует формулировать как предположения, которые должны быть строго обоснованы теоретически.

Подробное описание математической процедуры для каждого коэффициента корреляции дано в учебниках по математической статистике ; ; ; и др. Мы же ограничимся описанием возможности применения этих коэффициентов в зависимости от типа шкалы измерения.

Корреляция метрических переменных

Для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке, применяется коэффициент корреляции r -Пирсона . Сам коэффициент характеризует наличие только линейной связи между признаками, обозначаемыми, как правило, символами X и Y . Коэффициент линейной корреляции является параметрическим методом и его корректное применение возможно только в том случае, если результаты измерений представлены в шкале интервалов, а само распределение значений в анализируемых переменных отличается от нормального в незначительной степени. Существует множество ситуаций, в которых его применение целесообразно. Например: установление связи между интеллектом школьника и его успеваемостью; между настроением и успешностью выхода из проблемной ситуации; между уровнем дохода и темпераментом и т. п.

Коэффициент Пирсона находит широкое применение в психологии и педагогике. Например, в работах И. Я. Каплуновича и П. Д. Рабиновича, М. П. Нуждиной для подтверждения выдвинутых гипотез был использован расчет коэффициента линейной корреляции Пирсона.

При обработке данных «вручную» необходимо вычислить коэффициент корреляции, а затем определить p -уровень значимости (в целях упрощения проверки данных пользуются таблицами критических значений r xy , которые составлены с помощью этого критерия). Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем –1. Эти два числа +1 и –1 являются границами для коэффициента корреляции. Когда при расчете получается величина, большая +1 или меньшая –1, это свидетельствует, что произошла ошибка в вычислениях.

При вычислениях на компьютере статистическая программа (SPSS, Statistica) сопровождает вычисленный коэффициент корреляции более точным значением p -уровня.

Для статистического решения о принятии или отклонении H 0 обычно устанавливают α = 0,05, а для большого объема наблюдений (100 и более) α = 0,01. Если p ≤ α, H 0 отклоняется и делается содержательный вывод, что обнаружена статистически достоверная (значимая) связь между изучаемыми переменными (положительная или отрицательная – в зависимости от знака корреляции). Когда p > α, H 0 не отклоняется, содержательный вывод ограничен констатацией, что связь (статистически достоверная) не обнаружена.

Если связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует проверить возможные причины недостоверности связи.

Нелинейность связи – для этого проанализировать график двумерного рассеивания. Если связь нелинейная, но монотонная, перейти к ранговым корреляциям. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, и вычислить корреляции отдельно для каждой части выборки, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака.

Наличие выбросов и выраженная асимметрия распределения одного или обоих признаков. Для этого необходимо посмотреть гистограммы распределения частот обоих признаков. При наличии выбросов или асимметрии исключить выбросы или перейти к ранговым корреляциям.

Неоднородность выборки (проанализировать график двумерного рассеивания). Попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции:

  • связь обусловлена выбросами . При наличии выбросов перейти к ранговым корреляциям или исключить выбросы;
  • связь обусловлена влиянием третьей переменной . Если есть подобное явление, необходимо вычислить корреляцию не только для всей выборки, но и для каждой группы в отдельности. Если «третья» переменная метрическая – вычислить частную корреляцию.

Коэффициент частной корреляции r xy -z вычисляется в том случае, если необходимо проверить предположение, что связь между двумя переменными X и Y не зависит от влияния третьей переменной Z . Очень часто две переменные коррелируют друг с другом только за счет того, что обе они согласованно меняются под влиянием третьей переменной. Иными словами, на самом деле связь между соответствующими свойствами отсутствует, но проявляется в статистической взаимосвязи под влиянием общей причины. Например, общей причиной изменчивости двух переменных может являться возраст при изучении взаимосвязи различных психологических особенностей в разновозрастной группе. При интерпретации частной корреляции с позиции причинности следует быть осторожным, так как если Z коррелирует и с X и с Y , а частная корреляция r xy -z близка к нулю, из этого не обязательно следует, что именно Z является общей причиной для X и Y .

Корреляция ранговых переменных

Если к количественным данным неприемлем коэффициент корреляции r -Пирсона , то для проверки гипотезы о связи двух переменных после предварительного ранжирования могут быть применены корреляции r -Спирмена или τ -Кендалла . Например, в исследовании психофизических особенностей музыкально одаренных подростков И. А. Лавочкина был использован критерий Спирмена.

Для корректного вычисления обоих коэффициентов (Спирмена и Кендалла) результаты измерений должны быть представлены в шкале рангов или интервалов. Принципиальных отличий между этими критериями не существует, но принято считать, что коэффициент Кендалла является более «содержательным», так как он более полно и детально анализирует связи между переменными, перебирая все возможные соответствия между парами значений. Коэффициент Спирмена более точно учитывает именно количественную степень связи между переменными.

Коэффициент ранговой корреляции Спирмена является непараметрическим аналогом классического коэффициента корреляции Пирсона, но при его расчете учитываются не связанные с распределением показатели сравниваемых переменных (среднее арифметическое и дисперсия), а ранги. Например, необходимо определить связь между ранговыми оценками качеств личности, входящими в представление человека о своем «Я реальном» и «Я идеальном».

Коэффициент Спирмена широко используется в психологических исследованиях. Например, в работе Ю. В. Бушова и Н. Н. Несмеловой : для изучения зависимости точности оценки и воспроизведения длительности звуковых сигналов от индивидуальных особенностей человека был использован именно он.

Так как этот коэффициент – аналог r -Пирсона, то и применение его для проверки гипотез аналогично применению коэффициента r -Пирсона. То есть проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода – те же. В компьютерных программах (SPSS, Statistica) уровни значимости для одинаковых коэффициентов r -Пирсона и r -Спирмена всегда совпадают.

Преимущество коэффициента r -Спирмена по сравнению с коэффициентом r -Пирсона – в большей чувствительности к связи. Мы используем его в следующих случаях:

  • наличие существенного отклонения распределения хотя бы одной переменной от нормального вида (асимметрия, выбросы);
  • появление криволинейной (монотонной) связи.

Ограничением для применения коэффициента r -Спирмена являются:

  • по каждой переменной не менее 5 наблюдений;
  • коэффициент при большом количестве одинаковых рангов по одной или обеим переменным дает огрубленное значение.

Коэффициент ранговой корреляции τ -Кендалла является самостоятельным оригинальным методом, опирающимся на вычисление соотношения пар значений двух выборок, имеющих одинаковые или отличающиеся тенденции (возрастание или убывание значений). Этот коэффициент называют еще коэффициентом конкордации . Таким образом, основной идеей данного метода является то, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по X совпадает по направлению с изменением по Y , это свидетельствует о положительной связи, если не совпадает – об отрицательной связи, например, при исследовании личностных качеств, имеющих определяющее значение для семейного благополучия. В этом методе одна переменная представляется в виде монотонной последовательности (например, данные мужа) в порядке возрастания величин; другой переменной (например, данные жены) присваиваются соответствующие ранговые места. Количество инверсий (нарушений монотонности по сравнению с первым рядом) используется в формуле для корреляционных коэффициентов.

При подсчете τ- Кендалла «вручную» данные сначала упорядочиваются по переменной X . Затем для каждого испытуемого подсчитывается, сколько раз его ранг по Y оказывается меньше, чем ранг испытуемых, находящихся ниже. Результат записывается в столбец «Совпадения». Сумма всех значений столбца «Совпадение» и есть P – общее число совпадений, подставляется в формулу для вычисления коэффициента Кендалла, который более прост в вычислительном отношении, но при возрастании выборки, в отличие от r -Спирмена, объем вычислений возрастает не пропорционально, а в геометрической прогрессии. Так, например, при N = 12 необходимо перебрать 66 пар испытуемых, а при N = 489 – уже 1128 пар, т. е. объем вычислений возрастает более чем в 17 раз. При вычислениях на компьютере в статистической программе (SPSS, Statistica) коэффициент Кендалла обсчитывается аналогично коэффициентам r -Спирмена и r -Пирсона. Вычисленный коэффициент корреляции τ -Кендалла характеризуется более точным значением p -уровня.

Применение коэффициента Кендалла является предпочтительным, если в исходных данных имеются выбросы.

Особенностью ранговых коэффициентов корреляции является то, что максимальным по модулю ранговым корреляциям (+1, –1) не обязательно соответствуют строгие прямо или обратно пропорциональные связи между исходными переменными X и Y : достаточна лишь монотонная функциональная связь между ними. Ранговые корреляции достигают своего максимального по модулю значения, если большему значению одной переменной всегда соответствует большее значение другой переменной (+1), или большему значению одной переменной всегда соответствует меньшее значение другой переменной и наоборот (–1).

Проверяемая статистическая гипотеза, порядок принятия статистического решения и формулировка содержательного вывода те же, что и для случая r -Спирмена или r -Пирсона.

Если статистически достоверная связь не обнаружена, но есть основания полагать, что связь на самом деле есть, следует сначала перейти от коэффициента

r -Спирмена к коэффициенту τ -Кендалла (или наоборот), а затем проверить возможные причины недостоверности связи:

  • нелинейность связи : для этого посмотреть график двумерного рассеивания. Если связь не монотонная, то делить выборку на части, в которых связь монотонная, или делить выборку на контрастные группы и далее сравнивать их по уровню выраженности признака;
  • неоднородность выборки : посмотреть график двумерного рассеивания, попытаться разделить выборку на части, в которых связь может иметь разные направления.

Если же связь статистически достоверна, то прежде чем делать содержательный вывод, необходимо исключить возможность ложной корреляции (по аналогии с метрическими коэффициентами корреляции).

Корреляция дихотомических переменных

При сравнении двух переменных, измеренных в дихотомической шкале, мерой корреляционной связи служит так называемый коэффициент j, который представляет собой коэффициент корреляции для дихотомических данных.

Величина коэффициента φ лежит в интервале между +1 и –1. Он может быть как положительным, так и отрицательным, характеризуя направление связи двух дихотомически измеренных признаков. Однако интерпретация φ может выдвигать специфические проблемы. Дихотомические данные, входящие в схему вычисления коэффициента φ, не похожи на двумерную нормальную поверхность, следовательно, неправильно считать, что интерпретируемые значения r xy =0,60 и φ = 0,60 одинаковы. Коэффициент φ можно вычислить методом кодирования, а также используя так называемую четырехпольную таблицу или таблицу сопряженности.

Для применения коэффициента корреляции φ необходимо соблюдать следующие условия:

  • сравниваемые признаки должны быть измерены в дихотомической шкале;
  • X и Y должно быть одинаковым.

Данный вид корреляции рассчитывают в компьютерной программе SPSS на основании определения мер расстояния и мер сходства. Некоторые статистические процедуры, такие как факторный анализ, кластерный анализ, многомерное масштабирование, построены на применении этих мер, а иногда сами представляют добавочные возможности для вычисления мер подобия.

В тех случаях когда одна переменная измеряется в дихотомической шкале (переменная X ), а другая в шкале интервалов или отношений (переменная Y ), используется бисериальный коэффициент корреляции , например, при проверке гипотез о влиянии пола ребенка на показатель роста и веса. Этот коэффициент изменяется в диапазоне от –1 до +1, но его знак для интерпретации результатов не имеет значения. Для его применения необходимо соблюдать следующие условия:

  • сравниваемые признаки должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y – в шкале интервалов или отношений;
  • переменная Y имеет нормальный закон распределения;
  • число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Если же переменная X измерена в дихотомической шкале, а переменная Y в ранговой шкале (переменная Y ), можно использовать рангово-бисериальный коэффициент корреляции , который тесно связан с τ-Кендалла и использует в своем определении понятия совпадения и инверсии. Интерпретация результатов та же.

Проведение корреляционного анализа с помощью компьютерных программ SPSS и Statistica – простая и удобная операция. Для этого после вызова диалогового окна Bivariate Correlations (Analyze>Correlate> Bivariate…) необходимо переместить исследуемые переменные в поле Variables и выбрать метод, с помощью которого будет выявляться корреляционная связь между переменными. В файле вывода результатов для каждого рассчитываемого критерия содержится квадратная таблица (Correlations). В каждой ячейке таблицы приведены: само значение коэффициента корреляции (Correlation Coefficient), статистическая значимость рассчитанного коэффициента Sig, количество испытуемых.

В шапке и боковой графе полученной корреляционной таблицы содержатся названия переменных. Диагональ (левый верхний – правый нижний угол) таблицы состоит из единиц, так как корреляция любой переменной с самой собой является максимальной. Таблица симметрична относительно этой диагонали. Если в программе установлен флажок «Отмечать значимые корреляции», то в итоговой корреляционной таблице будут отмечены статистически значимые коэффициенты: на уровне 0,05 и меньше – одной звездочкой (*), а на уровне 0,01 – двумя звездочками (**).

Итак, подведем итоги: основное назначение корреляционного анализа – это выявление связи между переменными. Мерой связи являются коэффициенты корреляции, выбор которых напрямую зависит от типа шкалы, в которой измерены переменные, числа варьирующих признаков в сравниваемых переменных и распределения переменных. Наличие корреляции двух переменных еще не означает, что между ними существует причинная связь. Хотя корреляция прямо не указывает на причинную связь, она может быть ключом к разгадке причин. На ее основе можно сформировать гипотезы. В некоторых случаях отсутствие корреляции имеет более глубокое воздействие на гипотезу о причинной связи. Нулевая корреляция двух переменных может свидетельствовать, что никакого влияния одной переменной на другую не существует.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»