Единицы измерения высоты звука. Звуковые волны

Подписаться
Вступай в сообщество «parkvak.ru»!
ВКонтакте:

>>Физика: Громкость и высота звука. Эхо

Слуховые ощущения, которые у нас вызывают различные звуки, во многом зависят от амплитуды звуковой волны и ее частоты. Амплитуда и частота являются физическими характеристиками звуковой волны. Этим физическим характеристикам соответствуют определенные физиологические характеристики, связанные с нашим восприятием звука. Такими физиологическими характеристиками являются громкость и высота звука.

Громкость звука определяется его амплитудой: чем больше амплитуда колебаний в звуковой волне, тем громче звук . Так, когда колебания звучащего камертона затухают, вместе с амплитудой уменьшается и громкость звука. И наоборот, ударив по камертону сильнее и тем симым увеличив амплитуду его колебаний, мы вызовем и более громкий звук.

Громкость звука зависит также от того, насколько чувствительно наше ухо к данному звуку. Наибольшей чувствительностью человеческое ухо обладает к звуковым волнам с частотой 1-5 кГц.

Измеряя энергию, переносимую звуковой волной за 1 с через поверхность площадью 1 м 2 , мы найдем величину, называемую интенсивностью звука.

Оказалось, что интенсивность самых громких звуков (при которых возникает ощущение боли) превышает интенсивность самых слабых звуков, доступных восприятию человека. в 10 триллионов раз! В этом смысле человеческое ухо оказывается намного более совершенным устройством, чем любой из обычных измерительных приборов. Ни одним из них столь широкий диапазон значений измерить невозможно (у приборов он редко превосходит 100).

Единицу громкости называют соном (от латинского "сонус" - звук). Громкостью в 1 сон обладает приглушенный разговор. Тиканье часов характеризуется громкостью около 0,1 сон. обычный разговор - 2 сон, стук пишущей машинки - 4 сон, громкий уличный шум - 8 сон. В кузнечном цехе громкость достигает 64 сон, а на расстоянии 4 м от работающего двигателя реактивного самолета - 256 сон. Звуки еще большей громкости начинают вызывать болевые ощущения.
Громкость человеческого голоса можно увеличить с помощью мегафона . Он представляет собой конический рупор, приставляемый ко рту говорящего человека (рис. 54). Усиление звука при этом происходит благодаря концентрации излучаемой звуковой энергии в направлении оси рупора. Еще большего увеличения громкости можно достичь при помощи электрического мегафона, рупор которого соединен с микрофоном и специальным транзисторным усилителем.

Рупор можно применять и для усиления принимаемого звука. Для этого его следует приставить к уху. В старые времена (когда еще не было специальных слуховых аппаратов) этим часто пользовались плохо слышащие люди.

Рупоры использовались и в первых аппаратах, предназначенных для записи и воспроизведения звука.

Механическая запись звука была изобретена в 1877 г. Т. Эдисоном (США). Сконструированный им аппарат назывался фонографом . Один из своих фонографов (рис. 55) он прислал Л. Н. Толстому .

Основными частями фонографа являются валик 1, покрытый оловянной фольгой, и мембрана 2, соединенная с иглой из сапфира. Звуковая волна, действуя через рупор на мембрану, заставляла иглу колебаться и то сильнее, то слабее вдавливаться в фольгу. При вращении ручки валик (ось которого имела резьбу) не только вращался, но и перемещался в горизонтальном направлении. На фольге при этом возникала винтовая канавка переменной глубины. Чтобы услышать записанный звук, иглу устанавливали в начало канавки и валик вращали еще раз.

Впоследствии вращающийся валик в фонографе был заменен плоской круглой пластиной и борозду на ней стали наносить в виде сворачивающейся спирали. Так появились граммофонные пластинки.

Помимо громкости, звук характеризуется высотой. Высота звука определяется его частотой: чем больше частота колебаний в звуковой волне, тем выше звук . Колебаниям небольшой частоты соответствуют низкие звуки, колебаниям большой частоты - высокие звуки.

Так, например, шмель машет в полете своими крылышками с меньшей частотой, чем комар: у шмеля она составляет 220 взмахов в секунду, а у комара - 500-600. Поэтому полет шмеля сопровождается низким звуком (жужжанием), а полет комара - высоким (писком).

Звуковую волну определенной частоты иначе называют музыкальным тоном. Поэтому о высоте звука часто говорят как о высоте тона.
Основной тон с "примесью" нескольких колебаний других частот образует музыкальный звук . Например, звуки скрипки и пианино могут включать в себя до 15-20 различных колебаний. От состава каждого сложного звука зависит его тембр .

Частота свободных колебаний струны зависит от ее размеров и натяжения. Поэтому, натягивая струны гитары с помощью колышков и прижимая их к грифу гитары в разных местах, мы изменим их собственную частоту, а следовательно, и высоту издаваемых ими звуков.

В таблице 5 приведены частоты колебаний в звуках различных музыкальных инструментов.

Диапазоны частот, соответствующие голосам певцов и певиц, можно найти в таблице 6.


При обычной речи в мужском голосе встречаются колебания с частотой от 100 до 7000 Гц, а в женском - от 200 до 9000 Гц. Наиболее высокочастотные колебания входят в состав звука согласной "с".

Характер восприятия звука во многом зависит от планировки помещения, в котором слушается речь или музыка. Объясняется это тем, что в закрытых помещениях слушатель воспринимает, кроме прямого звука, еще и слитный ряд быстро следующих друг за другом его повторений, вызванных многократными отражениями звука от находящихся в помещении предметов, стен, потолка и пола.

Увеличение длительности звука, вызванное его отражениями от различных препятствий, называется реверберацией . Реверберация велика в пустых помещениях, где она приводит к гулкости. И наоборот, помещения с мягкой обивкой стен, драпировками, шторами, мягкой мебелью, коврами, а также наполненные людьми хорошо поглощают звук, и потому реверберация в них незначительна.

Отражением звука объясняется и эхо. Эхо - это звуковые волны, отраженные от какого-либо препятствия (зданий, холмов, леса и т. п.) и возвратившиеся к своему источнику. Если до нас доходят звуковые волны, последовательно отразившиеся от нескольких препятствий и разделенные интервалом времени t>50 - 60 мс, то возникает многократное эхо. Некоторые из таких эхо приобрели всемирную известность. Так, например, скалы, раскинутые в форме круга возле Адерсбаха в Чехии, в определенном месте троекратно повторяют 7 слогов, а в замке Вудсток в Англии эхо отчетливо повторяет 17 слогов!

Название "эхо" связано с именем горной нимфы Эхо, которая, согласно древнегреческой мифологии, была безответно влюблена в Нарцисса. От тоски по возлюбленному Эхо высохла и окаменела, так что от нее остался лишь голос, способный повторять окончания произнесенных в ее присутствии слов.

??? 1. Чем определяется громкость звука? 2. Как называется единица громкости? 3. Почему после удара молоточком по камертону его звук постепенно становится все тише и тише? 4. Чем определяется высота звука? 5. Из чего "состоит" музыкальный звук? 6. Что такое эхо? 7. Расскажите о принципе действия фонографа Эдисона.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Уроки физики, программы по физике, физика рефераты, физика тесты, курс физики , учебники по физике, физика в школе , разработка уроков физика, календарно тематическое планирование по физике

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Звук в музыке начнем изучать с самого простого и доступного — с тех звуков, которые нас окружают. По своей физической природе звук это колебания упругого тела, которые образуют в воздухе звуковые волны. Достигнув уха, воздушная звуковая волна воздействует на барабанную перепонку, от которой колебания передаются во внутреннее ухо и далее на слуховой нерв. Так мы слышим звуки.

Если пока не все понятно, не беда. Потому что уроки музыки не про то как мы слышим. Наша задача разобраться что мы слышим и выделить из всего разнообразия слышимого звуки в музыке.

Все звуки можно разделить на музыкальные и шумовые. В музыкальных звуках человеческое ухо может выделить определенную частоту, которая звучит громче других. В шумовых звуках содержится множество разных частот, их которых мы не можем на слух выделить по громкости какую-то отдельную частоту. В шуме сливаются звуки разной частоты с примерно одинаковой или плавающей громкостью.

Послушайте шумовые и музыкальные звуки:

  • шумовые звуки

Некоторые шумовые звуки применяются в музыке. Из трех представленных шумовых звуков первые два это звуки музыкальных инструментов. Сначала звучит большой барабан, затем треугольник.

Третий шумовой звук это, так называемый, «белый шум». В нем очень много составляющих, которые изменяются случайным образом. На картинке белый шум выглядел бы так:

Шумовые звуки изучать не будем, а приступим сразу к звукам музыкальным.

  • музыкальные звуки:

Если выделить из музыкального звука самую громкую составляющую и нарисовать её, то получим примерно такую картинку:


В реальном звуке картинка была бы посложнее, но, все-таки, главное то, что в музыкальном звуке присутствует самый громкий звук с одной (определенной) частотой. Из таких звуков можно составлять мелодии.

Уроки музыки. Итак, в музыкальных звуках можно выделить определенную частоту. О чем речь? Представим туго натянутую струну. Ударим по ней молоточком. Струна начнет колебания:

Частота, с которой колеблется струна, определяет частоту слышимого звука.
Измеряется частота в герцах: один герц (1 Гц) равен одному колебанию в секунду. Человек способен слышать звук в диапазоне от 16 Гц до 20 тысяч Гц (кГц) при передаче колебаний по воздуху. С возрастом слух ухудшается и звуковой диапазон сужается. Верхняя граница слышимых взрослым человеком звуков примерно 14 тысяч Гц. К тому же наиболее точно и ясно человек слышит ещё более узкий диапазон звуков: примерно от 16 до 4.200 Гц. В этом диапазоне звучат и музыкальные инструменты.

Звук в музыке. Высота звука.

В зависимости от частоты звука мы различаем звуки низкие и высокие. Вообще-то, здесь могли бы применить любые прилагательные, например, жирные и тощие. Однако, обозначение звуков по высоте выбрано не случайно. Оказывается так очень удобно рисовать музыкальные звуки на бумаге. Об этом рассказано на странице «нотная запись».

Чем меньше частота звука, тем более низким он кажется. Так, звук с частотой 200 колебаний в секунду (200 Гц) кажется низким:

Звуки большей частоты кажутся высокими.
Звук с частотой 4000 колебаний в секунду (4000 Гц) кажется высоким:

Высота это одна из характеристик звука в музыке. Каждый звук в музыке имеет свою высоту (частоту) и свое название. Звуки в музыке по высоте подбиралась опытным путем на протяжении столетий. У разных народов существуют разные системы музыкальных звуков и их названий. Мы будем рассматривать только европейскую систему, которая наиболее распространена в мире и используется в России. О звукоряде европейской системы будет рассказано на следующей странице, а сейчас перейдем к ещё одной характеристике звука.

Звук в музыке. Длительность звука.

Длительность характеризует количество времени, в течение которого длится звук.

Например, звук с частотой 440 Гц в течение 6 секунд:

Тот же звук в течение 2 секунд:

Надеюсь с длительностью всё понятно. Уточню, что в музыке длительность измеряется не секундами и не минутами. Длительность в музыке измеряется ритмическими единицами, которые могут быть выражены счетом, например, раз, два, три, четыре. Про это подробно рассказано на странице о темпе, метре и ритме музыки.

Звук в музыке. Амплитуда звука.

Амплитуда, это размах колебания источника звука (например, струны). Чем больше размах колебаний, тем, говорят, больше их амплитуда. В прямой зависимости от амплитуды звука находится его громкость — чем больше амплитуда, тем больше громкость. Меньше амплитуда — меньше громкость. Кроме амплитуды на громкость влияет расстояние для источника звука — чем ближе источник звука, тем (при одинаковой амплитуде) громче он звучит. Ещё на громкость звука оказывает влияние особенность человеческого слуха — так при одинаковой амплитуде и расстоянии до источника звука, громче всего будут слышны звуки в среднем регистре.

Вот два примера, один и тот же тон. Погромче и потише:

На громкость звука оказывает влияние и такой фактор как вид колебаний. Колебания могут быть затухающими (удар по струне гитары). В этом случае вместе с угасанием колебаний будет затихать и звук струны. Могут быть и незатухающие колебания — в этом случае колебания поддерживаются искусственно, например, движением смычка по струне или пением. Для незатухающих колебаний громкость можно изменять (уменьшать, увеличивать или оставлять неизменной) в зависимости от художественных целей и задач.

Звук в музыке. Тембр звука.

Во всех последних примерах использовался звук от звукового генератора с частотой 440 Гц. Эта частота в примерах выбрана не случайно. 440 Гц — частота ноты ля первой октавы. Про октавы рассказано на странице звукоряда, а тут важно отметить следующее — хотя, у ноты ля реальных музыкальных инструментов такая же частота, как была установлена у генератора, но звучит нота ля и генератор по разному. Более того, у разных музыкальных инструментов нота ля звучит тоже не совсем одинаково. Именно поэтому мы безошибочно можем сказать, какой инструмент звучит:

это звуковой генератор:

а это фортепиано:

это скрипка:

а это флейта:

Почему же одна и та же нота звучит по-разному, хотя, высота звука одинакова? Дело в том, что когда звучит реальный музыкальный инструмент у него на основную частоту ноты накладываются дополнительные колебания. Когда звучит, например, струна генерируются сразу несколько колебаний:

  • основной тон (самый громкий) во всю длину струны и
  • обертоны — ряд колебаний в половину, в треть, в четверть и так далее струны. Амплитуда (громкость) обертонных колебаний уменьшается в ростом ступени «деления» струны.

К тому же, к основному тону и обертонам добавляются ещё и звуки колебаний частей корпуса музыкального инструмента. Всё это придает звуку особенную индивидуальную окраску, которую называют тембр звука. Тембр позволяет отличить на слух разные музыкальные инструменты.

Тембр присущ звукам не только музыкальных инструментов, но и человеческому голосу тоже. Поэтому мы легко отличаем голоса разных людей.

Человеческое ухо лучше всего воспринимает самый громкий (основной) тон в музыкальном звуке. Частичные тоны (обертоны) не воспринимаются как отдельные звуки, придают основному звуку определенный колорит сливаясь с ним. Обертоны, входящие в состав сложного звука называют гармониками или гармоническими составляющими. Распределение громкости между гармониками у разных инструментов не всегда такое линейное как в теории. Например у гобоя (духовой музыкальный инструмент) вторая гармоника громче основного тона, а третья громче второй и только у последующих гармоник громкость снижается.

На электронных музыкальных инструментах (синтезаторах), изменяя соотношения гармоник в сложном звуке, можно составить любую громкость обертонов и подобрать их так, чтобы имитировать звучание любых музыкальных инструментов. Если выделить первую, третью и пятую гармоники — зазвучит кларнет 🙂

Итак, мы рассмотрели природу звука в музыке и его характеристики: высоту, амплитуду, длительность и тембр.

Если статья была полезна, поддержите проект — поделитесь этой страницей с друзьями:

Для обучения игре на духовых музыкальных инструментах мы рекомендуем программу «Свирелька», которую получить можно здесь.

Сила звука (интенсивность звука, определяющая его мощность) определяется как

Плотность звуковой энергии (Дж/м3) - определяет энергию звука, отнесенную к единице объема среды

Звуковая мощность - поток звуковой энергии W (Вт/м2)

Высота звука

Громкость звука

Тембр звука

Звуковое давление

Звуковое давление p - переменное избыточное давление, возникающее в среде при прохождении звуковой волны. Обычно звуковое давление мало по сравнению с постоянным давлением в среде. Звуковое давление следует отличать от давления звука.(см. табл.1)

отсюда 1 дБ - уровень звукового давления, для которого

Таблица 1. Уровни звукового давления (Муртазов А.К., 2007)

Высота звука

Высотой звука называется отражение в нашем сознании частоты колебания упругого тела. Мы воспринимаем как звук одного и того же названия не определенную частоту, а ряд близких частот. Например, как а1 мы воспринимаем колебательные движения не только с частотой 440 к/с, но и с частотами 435, 436, 437, 438, 439, 441, 442, 443, 444, 445 к/с (приблизительно). Таким образом, в нашем сознании частота перерабатывается в высоту.

Человек способен слышать весьма малые изменения высоты звука. Слуховой аппарат человека отмечает изменение высоты не одинаково в разных областях частот. Наиболее остро мы замечаем изменение высоты тонов в области от 500 до З 000 к/с. Для того, чтобы заметить эту разницу, требуется изменение в 5 центов (1/40 тона).

В низком регистре этот интервал увеличивается до 1/10 тона (например, в субконтроктаве). В высоком регистре, после З 000 к/с, интервал различения звуков по высоте также немного увеличивается. При одновременном слушании двух звуков можно заметить очень небольшую разницу между ними, благодаря биениям, которые отчетливо слышны, если слушать оба звука одним ухом. При слушании двух звуков, поочередно подводимых к разным ушам, разница, наоборот, увеличивается.

Если мы будем слушать короткие по времени звуки, постепенно уменьшая их длительность, то заметим, что значительное уменьшение длительности вызывает потерю ощущения высоты этих звуков.

Необходимо некоторое минимальное количество колебаний в секунду для того, чтобы человек мог судить о высоте звука. Исследования показали, что минимальная длительность звука, необходимая для определения его высоты, зависит от его частоты. (см.табл.2).

Таблица 2. Минимальная длительность звука, необходимая для определения его высоты

Из приведенной таблицы видно, что наиболее короткие звуки возможны в области частот от 700 до 3 200 к/с, т. е. от f2 до g4.

В низком регистре, в области субконтроктавы и контроктавы, длительность звука должна быть довольно большой.

Способность человека определять заданные музыкальные интервалы и воспроизводить их голосом, а также способность определять абсолютную высоту заданных звуков и воспроизводить их голосом являются свойствами музыкального слуха.

В первом случае, когда отношение между высотами звуков оценивается человеком как музыкальный интервал, как некоторое определенное качество, слух называется относительным.

Так как при некоторых изменениях между частотами звуков музыкальный интервал между ними сохраняет свою качественную определенность, то каждый интервал может иметь несколько количественных выражений.

Наличие относительного слуха совершенно необходимо для музыканта. Развитие его предусмотрено учебными планами музыкальных школ, училищ и консерваторий.

Во втором случае, т. е. при наличии способности определять абсолютную высоту заданных звуков (ступеней) или воспроизводить их голосом, слух называется абсолютным.

Обычно человек, обладающий абсолютным слухом, имеет также и относительный, но бывают случаи, когда при абсолютном слухе человек воспринимает музыкальные интервалы не как некоторое определенное качество, а лишь как сумму не связанных между собою звуков.

Абсолютный слух бывает двух типов - истинный и ложный. Для первого типа необходимо наличие у человека особых физиологических задатков. Второй тип абсолютного слуха требует постоянных и длительных упражнений.

Так, если истинный слух проявляется уже с самого раннего детства, то ложный слух можно выработать только в более зрелом возрасте. Критерием хорошего, истинного абсолютного слуха является способность быстро определять высоту заданного звука. Человек, обладающий ложным абсолютным слухом, обычно путем упражнений запоминает какой-либо один звук, например, б, а остальные звуки, он определяет, сравнивая их по высоте с этим звуком. Кроме того, встречаются лица, у которых абсолютный слух существует лишь по отношению к тому инструменту, на котором они играют. Но во всех случаях абсолютный слух способен определять и воспроизводить не частоту звука, а его высоту, т. е. его принадлежность к той или иной ступени.

Некоторые лица, не обладающие абсолютным слухом, могут определять высоту звуков, пользуясь какими-нибудь добавочными способами. Например, некоторые певцы определяют высоту звука, пользуясь ощущением напряжения голосовых связок.

Путем упражнений можно, безусловно, развить относительный слух. Что же касается превращения ложного абсолютного слуха в близкий к истинному, то это пока еще не доказано опытами.

Для музыканта большое значение имеет наличие внутреннего слуха - способность воображать высоту звуков и (в частности) созвучий. Внутренний слух позволяет исполнителю составить представление о музыкальном произведении до его прослушивания, а композитору дает возможность создавать произведение без помощи инструмента.

Для точного определения частоты колебаний звучащего тела применяются разнообразные приборы и методы.

Простейшим и наиболее старым методом является слуховое сравнение данного звука с другим, близким к нему по высоте звуком, частота колебаний которого точно известна, и последующий счет биений, возникающих между этими двумя звуками. Так например, если исследуемый звук дает с сравнительным звуком частоты 440 к/с полтора биения в секунду, а с другим сравнительным звуком частоты 444 к/с два с половиной биения в секунду, то частота его колебаний будет равна 141,5 к/c, и так далее.

Однако слуховой способ сравнения труден, так как требует специальной тренировки слуха исследователя. А если испытуемый звук дается человеком (например, голосом, на скрипке и т. п., на духовом инструменте), то он обычно инстинктивно подстраивается ко второму, слышимому им звуку измерительного прибора. Поэтому результаты сравнения получаются неточными.

Более точное определение частоты колебаний звучащих тел дает стробоскопический метод сравнения. При этом исследуемый звук превращается в световые импульсы (вспышки лампы с тлеющим разрядом), освещающие систему вращающихся дисков с чередующимися черными и белыми секторами, соотношения скоростей которых пропорциональны соотношениям между числами колебаний какой-либо музыкальной системы. При совпадении числа колебаний исследуемого звука с числом проходящих секторов на каком-либо из измерительных дисков, изображение на последнем покажется остановившимся. Это есть момент унисона двух колебательных процессов.

В существующих наиболее распространенных стробоскопических частотомерах применены комплекты из 12 измерительных дисков, скорости которых настроены по равномерно-темперированной музыкальной скале. Особое приспособление позволяет плавно изменять скорость вращения всех дисков одновременно в пределах ±3%, что соответствует изменению высоты звуков в пределах ± половины полутона. Указатель на шкале прибора дает возможность, в момент достижения унисона с исследуемым звуком, сразу прочесть высоту последнего относительно ближайшего, нормального темперированного звука, с точностью до 0,01 полутона (т. е. до одного цента).

Прибор очень чувствителен, не требует от оператора специальной тренировки слуха, и не издает никаких звуков, к которым мот бы подстраиваться исполнитель.

Получаемые на нем в музыкальных (логарифмических) единицах высоты звуков могут быть, при надобности, переведены в соответствующие частоты колебаний (герцы), при помощи специальных таблиц.

Звуковые волны, как и другие волны, характеризуются такими объективными величинами, как частота, амплитуда, фаза колебаний, скорость распространения, интенсивность звука и другими. Но. кроме этого, они описываются тремя субъективными характеристиками. Это - громкость звука, высота тона и тембр.

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшая (порог слышимости) и наибольшая (порог болевого ощущения) интенсивность звука, которая способна вызвать звуковое ощущение. На рисунке 15.10 представлена зависимость порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости. Наибольшее расстояние между кривыми приходится на частоты, к которым ухо наиболее чувствительно (1000-5000 Гц). 

Если интенсивность звука - величина, объективно характеризующая волновой процесс, то субъективной характеристикой звука является громкость Громкость зависит от интенсивности звука, т.е. определяется квадратом амплитуды колебаний в звуковой волне и чувствительностью уха (физиологическими особенностями). Так как интенсивность звука \(~I \sim A^2,\) то чем больше амплитуда колебаний, тем громче звук.

Высота тона - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. Чем больше частота, тем выше тон звука.

Звуковые колебания, происходящие по гармоническому закону, с определенной частотой, воспринимаются человеком как определенный музыкальный тон. Колебания высокой частоты воспринимаются как звуки высокого тона, звуки низкой частоты - как звуки низкого тона. Диапазон звуковых колебаний, соответствующий изменению частоты колебаний в два раза, называется октавой. Так, например, тон "ля" первой октавы соответствует частоте 440 Гц, тон "ля" второй октавы - частоте 880 Гц.

Музыкальным звукам соответствуют звуки, издаваемые гармонически колеблющимся телом.

Основным тоном сложного музыкального звука называется тон, соответствующий наименьшей частоте, которая имеется в наборе частот данного звука. Тоны, соответствующие остальным частотам в составе звука, называются обертонами. Если частоты обертонов кратны частоте \(~\nu_0\) основного тона, то обертоны называются гармоническими, причем основной тон с частотой \(~\nu_0\) называется первой гармоникой, обертон со следующей частотой \(~2 \nu_0\) - второй гармоникой и т.д.

Музыкальные звуки с одним и тем же основным тоном различаются тембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.

При одной высоте тона звуки, издаваемые, например, скрипкой и пианино, отличаются тембром.

Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны.

Шумы - это звуки, образующие сплошной спектр, состоящий из набора частот, т.е. в шуме присутствуют колебания всевозможных частот.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 431-432.

Вопросы.

1. По рисунку 70 расскажите, как исследовалась зависимость высоты звука от частоты колебаний его источника. Какой вывод был сделан?

В опыте на рис. 70 мы имеем линейку, зажатую в тиски, и издающую звук при колебании. Перемещая линейку в тисках, таким образом, чтобы её колеблющийся кусок уменьшился, мы замечаем что при колебании более короткой части линейки издаваемый ею звук становится выше, а частота колебаний увеличивается. Из этого опыта можно сделать вывод, что при увеличении частоты колебаний увеличивается высота звука.

2. С какой целью ставился опыт, изображенный на рисунке 75? Опишите, как этот опыт проводился и какой был сделан вывод.

В опыте на рис. 75 при соприкосновении картонной пластины с вращающимся зубчатым диском слышится звук, раздающийся в результате колебаний пластины. При увеличении скорости вращения зубчатого диска увеличивается частота колебаний и соответственно увеличивается высота звука.

3. Как на опыте удостовериться в том, что из двух камертонов более высокий звук издает тот, у которого больше собственная частота? (Частоты на камертонах не указаны).

Камертон с более высоким звуком на закопченой пластинке будет оставлять более частый след, т.е. колеблется с большей частотой (см. рис. 76)

4. От чего зависит высота звука?

Высота звука зависит от частоты колебаний.


5. Что называется чистым тоном?

Чистым тоном называется звук источника, совершающего грмонические колебания одной частоты.

6. Что такое основной тон и обертоны звука?

Основной тон - частотная составляющая сложного звука с самой низкой (малой) частотой колебания.
Обертоны - совокупность частотных составляющих звука без его основного тона. Частоты обертонов кратны частоте основного тона.

7. Чем определяется высота звука?

Высота звука определяется высотой основного тона.

8. Что такое тембр звука и чем он определяется?

Тембр звука - обертонная окраска звука; специфическая характеристика музыкального звука. Тембр звука определяется совокупностью его обертонов.

Упражнения.

1. Какое насекомое чаще машет крыльями в полете - шмель, комар или муха? Почему вы так думаете?

Чем выше частота, тем выше звук. Следовательно комар, машет крыльями чаще.

2. Зубья вращающейся циркулярной пилы создают в воздухе звуковую волну. Как изменится высота звука, издаваемого пилой, при ее холостом ходе, если на ней начать распиливать толстую доску из плотной древесины? почему?

Высота звука уменьшится, т.к. уменьшится частота вращения циркулярной пилы.

3. Известно, что чем туже натянута струна на гитаре, тем более высокий звук она издает. Как изменится высота звучания гитарных струн при значительном повышении температуры окружающего воздуха? Ответ поясните.

При повышении температуры гитарная струна растягивается, следовательно увеличивается период колебаний, а значит уменьшается частота и высота звука.

← Вернуться

×
Вступай в сообщество «parkvak.ru»!
ВКонтакте:
Я уже подписан на сообщество «parkvak.ru»